§ 11. движение вод мирового океана

Содержание:

Средняя скорость в живом сечении. Формула Шези

Для вычисления средней скорости потока при отсутствии непосредственных измерений широко применяется формула Шези. Она имеет следующий вид:

ср

Величина коэффициента С не является величиной постоянной. Она зависит от глубины и шероховатости русла. Для определения С существует несколько эмпирических формул. Приведем две из них:

формула Манинга

формула Н. Н. Павловского
где n — коэффициент шероховатости, находится по специальным таблицам М. Ф. Срибного. Переменный показатель в формуле Павловского определяется зависимостью.

Из формулы Шези видно, что скорость потока растет с увеличением гидравлического радиуса или средней глубины. Это происходит потому, что с увеличением глубины ослабевает влияние шероховатости дна на величину скорости в отдельных точках вертикали и тем самым уменьшается площадь на эпюре скоростей, занятая малыми скоростями. Увеличение гидравлического радиуса приводит и к увеличению коэффициента С. Из формулы Шези следует, что скорость потока растет с увеличением уклона, но этот рост при турбулентном движении выражен в меньшей мере, чем при ламинарном.

Причины образования течений

Динамика любого природного движения зависит от многих сил. Их взаимодействие определяет особенности каждого течения.

Причины, под действием которых вода в океане движется в разных направлениях, можно разделить на внешние, объективные и внутренние, вторичные.

К внешним источникам воздействия относятся:

  • направление и сила ветра;
  • влияние приливов и отливов;
  • изменение атмосферного давления;
  • изменение уровня Мирового океана под действием таяния снегов, осадков, испарения.

К внутренним причинам возникновения относят неоднородность плотности, температуры и солености воды.

Основные водные потоки

На данный момент учёные зафиксировали около пятнадцати основных океанических водных потоков в Тихом, четырнадцать – в Атлантическом, семь – в Индийском и четыре – в Северном Ледовитом океане.

А вот почти все океанические течения Индийского океана относятся к теплым или нейтральным, при этом Муссонное, Сомалийское, Западно-Австралийское и течение Игольного мыса (холодное) движутся со скоростью 70 см/сек., скорость остальных варьирует от 25 до 75 см/сек. Водные потоки этого океана интересны тем, что вместе с сезонными муссонными ветрами, которые два раза в год меняют своё направление, океанические реки также изменяют свой ход: зимой они в основном текут на запад, летом – на восток (явление, характерное только для Индийского океана).

Поскольку Атлантический океан протянулся с севера на юг, его течения также имеют меридиональное направление. Водные потоки, расположенные на севере, движутся по часовой стрелке, на юге – против неё.

Ярким примером течения Атлантического океана является Гольфстрим, который начинаясь в Карибском море, несёт тёплые воды на север, распадаясь по дороге на несколько боковых потоков. Когда воды Гольфстрима оказываются в Баренцевом море, они попадают в Северный Ледовитый океан, где охлаждаются и поворачивают на юг в виде холодного Гренландского течения, после чего на каком-то этапе отклоняются на запад и опять примыкают к Гольфстриму, образуя замкнутый круг.

Например, пассатные водные потоки перегоняют тёплые воды от западных тропических берегов к восточным, из-за чего в тропической зоне западная часть Тихого океана намного теплее противоположной стороны. А вот в умеренных широтах Тихого океана, наоборот, температура выше на востоке.

Использование в технике зависимости давления от скорости двигающихся газов и жидкостей

Мы наблюдали, что при движении жидкости по сравнению с состоянием покоя давление изменяется. Это давление зависит от динамического давления. Для наблюдения зависимости динамического давления от скорости жидкости или газа проведем следующий опыт. Возьмем два листа бумаги и зафиксируем их в вертикальном положении. Затем подуем в промежуток между листами (рис. 4.19). Листы начнут приближаться друг к другу. Причиной этого явилось то, что воздух между листами пришел в движение, и давление между ними уменьшилось.

Давление с внешней стороны листа будет больше, чем с внутренней, и за счет этого появится сила, сдавливающая листы.

Иногда корабли, плывущие в одну сторону, сталкиваются без видимых причин. Это явление объясняется появлением разности давления в пространстве между ними.

Сила, поднимающая крылья самолета

Полет самолетов тоже возможен благодаря этому явлению, на котором основано специальное устройство крыла (рис. 4.20). Крылья самолета имеют вогнутую форму для того, чтобы встречный поток воздуха обтекал крыло снизу и сверху. Путь, денный потоком снизу. Поэтому скорость потока воздуха над крылом больше, чем его скорость под крылом. Значит, давление в том месте, где скорость потока выше, меньше давления под крылом, где скорость потока меньше. В результате появляется разность давлений , направленная снизу вверх. Если поток будет турбулентным, разность давлений будет больше. В результате разницы этих давлений появляется сила, которая называется подъемной силой крыла.

Эффект Магнуса

Многие видели, как футбольный мяч, отправленный с угла поля, по дуге попадает в ворота. Что заставляет мяч поворачиваться? Опытный футболист пинает мяч не по центру, как обычно делают все, а ударяет по его краю. В результате под воздействием такого удара мяч во время движения поворачивается. Кроме того, в результате такого удара меняется
скорость течения воздуха с левой и правой сторон мяча, что создает разницу давлений в воздухе, и мяч попадает в ворота. Такое явление называется эффектом Магнуса (рис. 4.21).

Заказать решение задач по физике

Расчет скорости воды, вытекающей из отверстия сосуда

Используя уравнение Бернулли, можно вычислить скорость вытекания жидкости из отверстия, находящегося на глубине от поверхности жидкости (рис. 4.22).

Давление на поверхности жидкости, которая находится в сосуде, равно давлению атмосферы . Скорость жидкости . Давление жидкости перед отверстием тоже равно . Скорость
жидкости, вытекающей из отверстия, обозначим , и для этих двух случаев применим формулу:

отсюда получим:

Эта формула называется формулой Торричелли для идеальной жидкости.
 

Образец решения задачи:

В баке высотой 5 м, на высоте 50 см от земли установлен кран. С какой скоростью будет вытекать вода, если открыть кран?

Дано:

Найти:

Формула:

Решение:

Ответ:
 

Основные понятия, правила и законы

Устойчивое равновесие При выведении тела из положения равновесия
возникают силы, возвращающие тело в прежнее
положение. Это явление называется устойчивым
равновесием.
Неустойчивое равновесие При выведении тела из положения равновесия
возникают силы, удаляющие его от положения
равновесия. Такое равновесие называется
неустойчивым равновесием
Безразличное равновесие Безразличным равновесием называется явление,
при котором тело выводится из равновесного
состояния и не появляется сила, изменяющая его
состояние.
Момент силы Произведение силы на плечо силы:
Условие равновесия
тела, которое имеет ось
вращения
Когда векторная сумма моментов сил, действующих на тело, равняется нулю, тело остается в
равновесии:
Двухплечный рычаг Опора находится между точками, к которым
приложены силы.
Одноплечный рычаг Опора расположена на одном конце рычага, а груз
устанавливается на второй конец рычага
Степенной полиспаст Комплекс подвижных и неподвижных блоков– вес груза; – сила тяги.
Ламинарное течение Течение жидкости отдельными слоями
Турбулентное течение Движение жидкости в виде воронки
Уравнение
непрерывности течения
Модули скоростей несжимаемой жидкости, теку-
щей по трубам разного сечения, обратно пропорциональны сечениям трубы: .
Уравнение Бернулли
В потоке жидкости давление велико, если скорость течения мала, и давление мало, если скорость велика.
Динамическое давление Давление, создаваемое в результате движения
жидкости.
Эффект Магнуса Изменение направления движения предмета в
результате появления разницы давлений газа или
жидкости по сторонам предмета, который совершает вращательное движение.
Формула Торричелли – скорость течение воды; – высота.

Приливные и сейсмические волны

Приливные волны

Приливными волнами называют явления, возникающие от воздействия сил притяжения Солнца и Луны и вызывающие периодические характерные колебания уровня водных масс в Мировом океане. Приливная деятельность начинает формироваться от влияния Луны и Солнца, но, по причине большей удаленности Солнца, приливы спровоцированные им случаются не так часто, как из-за Луны (их в два раза меньше). Основное влияние на приливную деятельность оказывают острова и очертания линии берега. Данная причина может объяснить то, как колебания Мирового океана во время приливов на одинаковой широте изменяются в более широких пределах. Возле островов приливы совсем не значительные, а вот в открытых водах, вода поднимается до 1 метра. На много больших значений приливы могут достигать в заливах, имеющих извилистые берега, проливах и речных устьях.

Сейсмические волны

Причина, из-за которой начинают формироваться сейсмические волны (цунами) — это изменение рельефа на морском дне, которое происходит из-за передвижений литосферных плит, в следствии чего могут появляться поднятия, провалы, оползни или землетрясения. Нужно подчеркнуть, что механизм, при котором зарождаются сейсмические волны, имеет прямую зависимость от характера процессов, которые преобразуют рельеф на океаническом дне. К примеру, во время образования цунами в водах открытого океана при появлении трещины или провала на дне, вода сразу же стремиться попасть в центр появившегося углубления, наполнив вначале его, а потом переполняет, образуя гигантский по объему водяной столб на поверхности мирового океана.

Перед тем как начинается процесс образования цунами и их обрушение на береговую линию, обычно предшествует серьезное понижение уровня воды. Буквально за пару минут вода начинает отступать от берега на несколько сотен метров, а в редких случаях на километры, после чего на береговую линию начинается обрушение цунами. Сразу же за первой, самой большой и разрушительной волной приходят еще 2-5 волн небольшого размера.

Скорость передвижения волн цунами очень высока и может достигать 150 — 900 км/ч. При обрушении на города и поселки, находящиеся на береговой линии в зоне их воздействия, они могут нанести серьезные разрушения и способны уносить жизни людей. Одно из самых разрушительных цунами произошло в 2004 году в Индийском океане, из-за него погибло больше чем 200 000 человек, а ущерб причиненный им составил миллиарды долларов.

В наше время появление цунами можно предсказать с максимально высоким коэффициентом точности. Базируются эти прогнозы на наблюдениях и контроле сейсмической активности под водными массами Мирового океана. Обычно, прогнозы делаются на основе таких наблюдений как:

  • акустическое наблюдение;
  • мониторинг при помощи мареографов;
  • сейсмический мониторинг.

Эти способы дают возможность вырабатывать и предпринимать определенные меры, которые направлены на обеспечение безопасности.

Возникновение течений в Мировом океане

Океаническими или морскими течениями именуются масштабные перемещения водных потоков Мирового океана со средней скоростью от 1 до 9 км/ч.

Движутся эти потоки по определенному пути и направлению. Это основная причина того, почему их еще называют реками океанов.

Уже во второй половине XVIII столетия мореходы отлично изучили Гольфстрим и благополучно применяли полученные навыки в практических целях: из Америки в Англию двигались по течению, а при обратном направлении соблюдали определенную дистанцию.

Рис. 3. Гольфстрим на карте.

Течения движутся не сами по себе – их заставляют перемещаться такие факторы как:

  • потоки воздушных масс;
  • осевое вращение Земли;
  • гравитационная сила Земли и Луны;
  • донный ландшафт;
  • материковые и островные контуры;
  • различие температурных показателей воды;
  • плотность воды;
  • глубина в различных районах океана.

Понятие «холодное» или «теплое» течение довольно условные.

Холодным, теплым или же нейтральным течение называется потому, что за основу берется сравнивание температуры воды течения с температурными показателями окружающего океана.

Сегодня ученым удалось изучить и зафиксировать внушительный список водных потоков океанического происхождения:

  • 15 течений в акваториях Тихого океана;
  • 14 – в Атлантическом океане;
  • 7 – в Индийском океане;
  • 4 – в Северном Ледовитом океане.

Долгое время считалось, что глубинные воды Мирового океана практически статичны. Однако, благодаря специализированным подводным агрегатам было отмечено, что на достаточной глубине как медленно, так и быстро проистекают водные потоки.

Что мы узнали?

Выяснили, как могут влиять теплые воды, попадая в холодные течения. Получили информацию из курса географии за 6 класс. Поняли, что такое явление, какими являются течения, оказывают значительное влияние на процессы, происходящие на Земле.

  1. /10

    Вопрос 1 из 10

Состав океанской воды Мирового океана

Контактируя с атмосферой, проходя гидрологический цикл, морская вода обменивается с воздухом содержащимися в нём газами: кислородом, азотом, углекислым газом и другими элементами. В океанической воде обнаружены почти все химические вещества.

Таблица № 2 «Состав морской воды».

Главные ионы (содержатся в наибольшем количестве) Растворенные газы Биогенные вещества Микроэлементы (растворенные вещества) Растворенные неорганические и органические вещества
  • хлориды;
  • сульфаты;
  • карбонаты.
  • кислород;
  • азот;
  • углекислый газ и др.
соединения азота, фосфора, кремния.
  • цинк;
  • золото;
  • фтор;
  • никель и д. р.
продукты распада отмерших животных и растительных организмов

Поверхностная горизонтальная циркуляция

Поверхностные течения вызываются ветрами, трением между слоями воды и инерцией вращательного движения Земли. Есть теплые токи, которые текут к полярным зонам, и холодные потоки, которые текут от полюсов к экваториальной зоне.

Эти течения образуют океанические круговороты или вращающиеся течения, главными из которых являются те, которые возникают вокруг экватора Земли. Еще одним выражением горизонтального движения океанических вод являются волны, создаваемые ветром, направленным к побережью.

Поскольку ветры более сильные, волны могут достигать значительной высоты. Подводные сейсмические или вулканические явления могут вызвать исключительные волны огромной разрушительной силы, называемые цунами.

Причины образования

Природные явления зарождаются благодаря сочетанию ряда факторов. Океанические течения не выпадают из общего правила: на формирование потоков действует комбинация нескольких движущих сил.

К внешним причинам относятся:

  • направление, сила ветра;
  • вращение Земли, фазы Луны;
  • перепады атмосферного давления;
  • количество пресных сточных вод.

Внешняя среда влияет на физико-химические свойства водной массы, изменяя её температуру, плотность, глубину, траекторию движения. Физические показатели – также основа для классификации. Вывод: причинами перемещения воды в океане является возникшая неоднородность среды в результате влияния внешних и внутренних факторов.

Океанские воды пластиковых островов

Океанские воды с высокой концентрацией пластика были обнаружены в так называемых океанских круговоротах Тихого, Атлантического и Индийского океанов. Это небольшие кусочки пластика, большинство из которых микроскопические, которые покрывают большие площади океана.

Этот пластик поступает в основном из континентальных районов и частично разложился во время движения через океан. Морские течения концентрируют его в центре системы вращения течения, которая составляет эти океанические круговороты.

Эти концентрации пластика негативно влияют на жизнь океана и физико-химические свойства океанических вод в этом районе.

Свойства вод Мирового океана

Океан справедливо принято считать главнейшим аккумулятором тепла на Земле. Его средняя температура равна 17 градусам тепла по Цельсию.

Вся толща воды нагревается Солнцем намного медленнее поверхности суши и очень неравномерно. Сперва тепло накапливается в верхних слоях воды, и лишь затем намного более медленно проникает к самому дну. Многие испробовали это на себе. Так, плавая жарким летним днём в водоёме – озере, реке или даже море (особенно в море) – легко ощутить разницу в температуре у поверхности и у дна. И если наверху вода может оказаться очень тёплой, то ноги вполне могут занеметь от холода. Это объясняется тем, что вода и большинство водных растворов солей крайне плохо проводят тепло. Данное общее свойство работает и для вод Мирового океана, которые, как отмечалось выше, представляют собой раствор многих солей.

Таким образом, поскольку тепло отдаётся водой довольно медленно, то обогрев той части планеты, которая находится вне досягаемости солнечных лучей (иными словами, как раз та, где в некоторый момент времени ночь), происходит именно за счёт накопленного океаном тепла.

Ещё одним интересным свойством является температура замерзания океанских вод. Всем давно известен и привычен тот факт, что вода в нормальных условиях замерзает при 0 градусов по Цельсию. Но для морской воды это несколько иначе. Дело в том, что тем больше вещества присутствует в растворе и чем меньше в нём доля растворителя, тем сильнее понижается температура замерзания субстанции. Что это значит? Океаническая вода замерзает при более низкой температуре, которая в среднем составляет приблизительно 4 градуса мороза по Цельсию.

На количестве растворённой соли (то есть, на солёности – о ней речь пойдёт немного ниже) базируется ещё одно свойство вод Мирового океана. Показатели плотности и солёности вод прямо пропорциональны друг другу: чем выше концентрация соли, тем выше плотность раствора, то есть, как было условлено раньше, воды. Таким образом, плотность разнится от региона к региону.

Общеизвестно, что в северных широтах на поверхности океанов могут образовываться айсберги. Их плотность намного меньше, чем плотность воды, и именно поэтому они как бы дрейфуют по ней.

Цунами

Цунами

Цунами — это волны огромной разрушительной силы. Они вызываются подводными землетрясениями или извержениями вулканов и могут пересекать океаны быстрее, чем реактивный самолет: 1000 км/ч. В глубоких водах они могут быть ниже одного метра, но, приближаясь к берегу, замедляют свой бег и вырастают до 30-50 метров, прежде чем обрушиться, затопляя берег и сметая все на своем пути. 90% всех зарегистрированных цунами отмечено в Тихом океане.

Наиболее распространённые причины.

Около 80% случаев зарождения цунами являются подводные землетрясения. При землетрясении под водой происходит взаимное смещение дна по вертикали: часть дна опускается, а часть приподнимается. На поверхности воды происходят колебательные движения по вертикали, стремясь вернуться к исходному уровню, — среднему уровню моря, — и порождает серию волн. Далеко не каждое подводное землетрясение сопровождается цунами. Цунамигенным (то есть порождающим волну цунами) обычно является землетрясение с неглубоко расположенным очагом. Проблема распознавания цунамигенности землетрясения до сих пор не решена, и службы предупреждения ориентируются на магнитуду землетрясения. Наиболее сильные цунами генерируются в зонах субдукции. Также, необходимо чтобы подводный толчок вошёл в резонанс с волновыми колебаниями.

Оползни. Цунами такого типа возникают чаще, чем это оценивали в ХХ веке (около 7 % всех цунами). Зачастую землетрясение вызывает оползень и он же генерирует волну. 9 июля 1958 года в результате землетрясения на Аляске в бухте Литуйя возник оползень. Масса льда и земных пород обрушилась с высоты 1100 м. Образовалась волна, достигшая на противоположном берегу бухты высоты более 524 м. Подобного рода случаи достаточно редки и, не рассматриваются в качестве эталона. Но намного чаще происходят подводные оползни в дельтах рек, которые не менее опасны. Землетрясение может быть причиной оползня и, например, в Индонезии, где очень велико шельфовое осадконакопление, оползневые цунами особенно опасны, так как случаются регулярно, вызывая локальные волны высотой более 20 метров.

Вулканические извержения составляют примерно 5% всех случаев цунами. Крупные подводные извержения обладают таким же эффектом, что и землетрясения. При сильных вулканических взрывах образуются не только волны от взрыва, но вода также заполняет полости от извергнутого материала или даже кальдеру, в результате чего возникает длинная волна. Классический пример — цунами, образовавшееся после извержения Кракатау в 1883 году. Огромные цунами от вулкана Кракатау наблюдались в гаванях всего мира и уничтожили в общей сложности более 5000 кораблей, погибло около 36 000 человек.

Признаки появления цунами.

  • Внезапный быстрый отход воды от берега на значительное расстояние и осушка дна. Чем дальше отступило море, тем выше могут быть волны цунами. Люди, которые находятся на берегу и не знающие об опасности, могут остаться из любопытства или для сбора рыбы и ракушек. В данном случае необходимо как можно скорее покинуть берег и удалиться от него на максимальное расстояние — таким правилом следует руководствоваться, находясь, например, в Японии, на Индоокеанском побережье Индонезии, Камчатке. В случае телецунами волна обычно подходит без отступления воды.
  • Землетрясение. Эпицентр землетрясения находится, как правило, в океане. На берегу землетрясение обычно гораздо слабее, а часто его нет вообще. В цунамоопасных регионах есть правило, что если ощущается землетрясение, то лучше уйти дальше от берега и при этом забраться на холм, таким образом заранее подготовиться к приходу волны.
  • Необычный дрейф льда и других плавающих предметов, образование трещин в припае.
  • Громадные взбросы у кромок неподвижного льда и рифов, образование толчеи, течений.

КАТАСТРОФА НА ПОБЕРЕЖЬЕ ИНДИЙСКОГО ОКЕАНА

26 декабря 2004 г. в Индийском океане у западной оконечности острова Суматра произошло 9-балльное землетрясение. Вертикальные смещения океанического дна породили мощные волны цунами, обрушившиеся на многочисленные острова Индонезии, побережье Индокитая, Никобарские и Андаманские острова, полуостров Индостан, остров Шри-Ланка, а также на Кению и Сомали. У берегов Индонезии чудовищной силы волна достигала высоты более 20 м, она сметала всё на своём пути, смыла сотни городов и сёл, погибло около 500 тыс. человек.

В морях высота волн небольшая, например, в Средиземном море волны вырастают только до пяти метров. Наибольшие волнения наблюдаются в умеренных широтах, которые даже получили название «ревущие сороковые», и в океаническом кольце Южного полушария, где 25-метровые волны длиной в 400 м передвигаются со скоростью 20 м/с.

При подходе к берегу нижняя часть волны тормозит о дно, её верхняя часть опрокидывается, и гребень разбивается на мелкие брызги. Разрушаясь у берега, волны образуют прибой . У обрывистых берегов волны с огромной силой ударяют о скалы, и вверх взлетают фонтаны брызг. Разрушительная сила прибоя очень велика.

Мировой океан. Рельеф дна, течения

Мировой океан – все водное пространство. Мировой океан занимает свыше 70% общей поверхности Земли (почти 71%). В Северном полушарии океан занимает 61% поверхности, в Южном – 81%. Мировой океан разделяется на океаны, моря, заливы, проливы. Общий объем воды Мирового океана 1 млрд. 370 млн. км3. В его водах растворено 73 химических элемента из 92 известных в природе и 118, известных на сегодня в Периодической таблице Д. И. Менделеева.

Части Мирового океана

Мировой океан делится на пять океанов – Тихий, Атлантический, Индийский, Северный Ледовитый и Южный. Южный океан как самостоятельной части Мирового океана появился относительно недавно (с 2000 года). Он включает южные части Тихого, Атлантического, Индийского океанов, а также моря, окружающие Антарктиду.

Размеры океанов: Тихий – 180 млн км2; Атлантический – 93 млн км2; Индийский – 75 млн км2; Северный Ледовитый – 13 млн км2. Границы океанов условны. Основанием для деления океанов служат самостоятельная система течений, распределение солености, температуры. Средняя глубина Мирового океана – 3711 м. Наибольшая глубина – 11 022 м (Марианская впадина в Тихом океане).

Моря – части океанов, в большей или меньшей степени отделенные от него сушей, отличающиеся особым гидрологическим режимом. Различают моря внутренние и окраинные. Внутренние моря глубоко вдаются в глубь материка (Средиземное, Балтийское). Окраинные моря прилегают к материку обычно с одной стороны, а с другой – сравнительно свободно сообщаются с океаном (Баренцево, Охотское).

Заливы – более или менее значительные пространства океана или моря, которые врезаются в сушу и имеют широкую связь с океаном. Небольшие заливы называются бухтами. Глубокие, извилистые, длинные заливы с обрывистыми берегами – фьорды .

Проливы – более или менее узкие водные пространства, которые соединяют два соседних океана или моря.

Рельеф дна Мирового океана.

3/4 площади Мирового океана занимают глубины от 3000 до 6000 м, т. е. эта часть океана принадлежит к его ложу. В рельефе дна океана выделяют составные части:

  • Подводная окраина материка сложена земной корой материкового типа. Состоит из шельфа (подводной мелководной равнины глубиной до 200 м) и материкового склона (глубина до 2500—3000 м).
  • Переходная зона сложена корой переходного типа, включает окраинные моря, островные дуги, глубоководные желоба.
  • Ложе океана сложено корой океанического типа. Состоит из срединных океанических хребтов и глубоководных котловин (4—4,5 км).

Таблица «Рельеф дна океана. Глубоководные впадины»

Морские (океанические) течения.

Морские течения – горизонтальное перемещение водных масс в определенном направлении. Течения можно классифицировать по многим признакам. По сравнению с температурой окружающей воды океана выделяют теплые, холодные и нейтральные течения. В зависимости от времени существования выделяют кратковременные или эпизодические, периодические (сезонные муссонные в Индийском океане, приливно-отливные в прибрежных частях океанов) и постоянные течения. В зависимости от глубины выделяют поверхностные (охватывают слой воды на поверхности), глубинные и придонные течения. Течения по своему происхождению бывают:

  1. дрейфовые – вызываются постоянными ветрами (Северное и Южное пассатные, течение Западных Ветров);
  2. ветровые – вызываются действием сезонных ветров (летние муссонные в Индийском океане);
  3. сточные – образуются вследствие разницы уровня воды в разных частях океана, текут из районов избытка воды (Гольфстрим, Бразильское, Восточно-Австралийское);
  4. компенсационные – возмещают (компенсируют) отток воды из разных частей океана (Калифорнийское, Перуанское, Бенгельское);
  5. плотностные (конвекционные) – образуются вследствие неравномерного распределения плотности океанической воды из-за разной температуры и солености (Гибралтарское течение);
  6. приливно-отливные периодические течения – образуются в связи с притяжением Луны.

Как правило, морские течения существуют благодаря сочетанию нескольких причин. Течения оказывают большое влияние на климат, особенно прибрежных территорий, проходя вдоль западного или восточного берега материков. Направление течений определяется общей циркуляцией атмосферы, отклоняющей силой вращения Земли вокруг оси, рельефом океанского дна, очертаниями материков.

Конспект по теме «Мировой океан. Рельеф дна, течения». Следующая тема: «Температура и соленость Мирового океана».

Виды

Рассмотрим поочередно каждую из существующих классификаций потоков.

Классификация

По причине возникновения

Основная классификация строится на связи с причиной рождения потока:

  • Градиентное. Название виду дало понятие “барический градиент”, которое отражает степень атмосферного давления. Разность значений возникает под влиянием ветрового нагона воды, силы движения Земли и приводит к неравномерности изменений уровня моря. Градиентный компонент — основной для Гольфстрима, Куросио, других крупнейших течений Мирового океана.
  • Стоковое и компенсационное. Уровень океана зависит от числа впадающих рек, количества атмосферных осадков. Накопление воды создаёт перепад гидростатического давления, приводя в движение водные массы. Типичный представитель класса – Флоридское течение, вытекающее из пролива и компенсирующее наполнение Гольфстрима. К этой группе относят Восточно-Австралийское, Калифорнийское, Аляскинское и много других течений.
  • Ветровое. Во время длительных плаваний моряки встречаются с затяжными ветрами, которые создают огромные волны. Трение воздуха о поверхность воды вызывает активное движение верхних пластов океана. За счёт турбулентности и сдвиговых напряжений толчок передаётся глубинным слоям. Мощная циркуляция перемешивает, переносит тонны воды. Ветер – первая причина возникновения всех видов морских потоков.

Подгруппы этого вида: муссонные, пассатные течения, связанные с ветром, который дует в одном направлении.

Классификация по устойчивости

По устойчивости потоки делятся на:

  • постоянные, не меняющие направление;
  • периодические, приливно-отливные;
  • сезонные, следующие за курсом ветра.

Карта основных потоков

Типология по глубине

  1. Поверхностные потоки образуются на глубине менее 350 метров от уровня океана в виде горизонтальных масс воды. Сорок океанических “рек без берегов” определяют земную погоду. Влага испаряется с морской глади под действием солнца, взаимодействует с атмосферой, участвуя в непрерывном круговороте воды.
  2. Глубинные потоки появляются ниже границы поверхностных, перемещаются с меньшей скоростью. Движение вод поднимает со дна остатки водорослей, обеспечивая питанием моллюсков. Перенос икринок, спор содействует размножению рыб и растений.
  3. Придонные потоки медленно двигаются параллельно рельефу океана, переносят осадочные породы, которые образуют отмели. Учёные связывают их происхождение с приливами и стоячими волнами.

Деление по свойствам переносимой воды

По нагреванию воды: холодное, нейтральное, тёплое.

По содержанию солей: умеренное, солёное, распресненное.

По траектории: спиральное, криволинейное, прямолинейное.

Условное разграничение опирается на сравнение с температурой окружающих вод.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector