Что такое глубоководный океанический жёлоб?

Подводная окраина

Подводная окраина является внешней частью континента, расположенной ниже уровня Мирового океана. В ее состав входят материковая отмель или шельф, материковый склон, материковое подножье.

Таблица: строение и устройство дна Мирового океана
Название элемента рельефа Максимальная глубина, м Соотношение с площадью Мирового океана, %
Шельф 200 Около 9
Материковый склон 2500-3000 Около 15,3
Материковое подножье 4000-5000 спорный вопрос

Остановимя подробнее на каждом элементе рельфева и на его особенностях.

Шельф

Шельф образовался в результате разрушения подводной части континента, с которым имеет общий рельеф и геологическое строение.

Пространство шельфа находится между береговой линией и шельфовой бровкой, по которой проходит перегиб поверхности дна, поэтому глубина, указанная в таблице, условна. Например, глубина бровки в Охотском море превышает 500 м. Северные и восточные побережья Евразии, северный берег Австралии, а также Гудзонов залив имеют самый большой по площади шельф.

Материковый склон

Материковый склон ограничивается шельфовой бровкой, после которой уклон морского дна увеличивается (от 4-5° до 40-45°). Материковый склон представляет собой продолжение континента, поэтому они имеют одинаковое геологическое строение.

На поверхности склона наблюдаются уступы с обрывами и каньоны в сторону океана. Каньоны не являются продолжением материковых объектов, могут быть достаточно продолжительными и глубокими. Самый крупный подводный каньон – Багамский, с тремя ответвлениями и высотой стенок до 5 км.

Подножье

Материковое подножье образуется в процессе отложения обломочного материала, перенесенного в океан при разрушении поверхности материка. Мощность накопленных обломочных пород достигает 2-5 км.

Ширина подножья 200-300 км, однако это спорные цифры. В некоторых регионах нет четкого деления подводной окраины на составляющие.

Геология

Геологическая история

Открытие Атлантического океана начинается с фазы рифтинга на уровне центральной Атлантики, связанной с постварискными растянутыми явлениями . В перми континентальная область между Америкой и Северо-Западной Африкой подвергается поднятию, которое приводит к началу дислокации этой континентальной зоны. Происходит важный вулканизм, который приводит к образованию Магматической провинции Центральной Атлантики . В триасе фаза рифтинга начинается на окраинах Марокко и Новой Шотландии . Ocean пола аккреция начинается в конце Синемюрского яруса и продолжается до сегодняшнего дня. Наконец, открытие Северной Атлантики происходит в эоцене , около 50 миллионов лет назад.

Обучение

Открытие Атлантического океана является результатом фрагментации суперконтинента из Пангеи и миграции в африканском , южноамериканском , евразийском и североамериканских континентах в течение мезо — кайнозойский .

Первые эпизоды рифтинга Центральной Атлантики начались на окраинах Западной Африки и Северной Америки в среднем триасе и продолжались до океанизации в нижней юре . Первые фазы наращивания дна океана обсуждаются между Sinérmurien и Toarcien . В общей стратиграфии, описанной на комбинированных окраинах Северной Америки и Западной Африки, эвапориты и «красная» осадочная континентальная триасовая серия покрыты мощными образованиями юрских карбонатов . Открытие Атлантики также связано с установлением вулканической провинции, затрагивающей весь регион: базальты центральной атлантической магматической провинции (базальты CAMP в англоязычной литературе) датируются точно 200 ± 3 млн лет ( Hettangien ).

Текущая скорость его расширения составляет около двух сантиметров в год.

Атлантический океан занимает длинный бассейн, простирающийся с севера на юг, ограниченный на западе Америкой , на востоке — Европой и Африкой . Он достигает максимальной глубины 8605  м в желобе Милуоки недалеко от Пуэрто-Рико . Поскольку срединно-Атлантический хребет все еще активен, здесь все еще можно наблюдать образование дна океана ( черные курильщики , лава в подушках , гидротермализм и т. Д.).

Геометрия срединно-океанических хребтов

С точкой зрения батиметрии , то Срединно-Атлантический хребет появляется как подводный горный хребет , вызванные три одновременных факторами:

  • из-за того, что толщина океанической коры там очень слабая или даже равна нулю ( мантия вынесена на обнажение), хребет не подвергается «опускающемуся» эффекту в мантии, обычно отмечающей океаническую кору, которая обычно является плотной;
  • в мантии конвективных ячеек активных на базе магистральных сетей , как правило, применяют силу , направленную вверх прямо над последним;
  • наконец, океаническая кора на уровне хребтов моложе, поэтому теплее и, следовательно, в целом менее устойчива.

Срединно-Атлантический хребет простирается от острова Ян-Майен на севере примерно до 58 ° южной широты с максимальной шириной 1600  км . В центре хребта находится ров глубиной более 1000  м и шириной от 25 до 50  км . По обе стороны от рва хребет поднимается до уровня менее 1500  м ниже уровня моря, несколько гор даже возвышаются над водой и образуют острова.

В Южной Атлантике есть дополнительный хребет — хребет Уолвис .

Срединно-Атлантический хребет разделяет Атлантический океан на две большие впадины, глубина которых варьируется от 3700 до 5500 метров. Поперечные гребни разделяют их на несколько бассейнов.

Он

Атлантический океан включает множество архипелагов. Некоторые из них возникли на граничащих с ним континентах, другие образовались центральным океаническим хребтом.

Климатология

Атлантический океан напрямую влияет на европейский климат. Депрессии, которые циркулируют в Европе, в частности в Бельгии, Швейцарии и Франции, образуются в Атлантике и распространяются с запада на восток, вызывая нестабильную, влажную и дождливую погоду. Высокое давление Азорских островов, которое присутствует над Азорскими островами, также влияет на европейскую погоду, принося сухую и солнечную погоду.

Исследование океанического дна

Первая серьезная попытка изучения океанических глубин предпринята британской экспедицией в 1872 году. Для этого судно «Челленджер» было переоборудовано в крупную научную лабораторию океанографии.

Оно совершило четырехлетнее кругосветное путешествие, во время которого десятки ученых проводили измерения температуры и солености вод, исследовали глубину, изучали обитателей морей.

Конспекты, составленные по итогам экспедиции, обрабатывали около 20 лет. В результате были сделаны научные доклады и построена карта Земли для океанов. Она развеяла миф, что оно ровное и плоское. Так зародилась новая наука — океанология, возможности которой расширились с появлением в XX веке глубоководных аппаратов и современных измерительных приборов. В настоящее время при определении рельефа дна океана используют:

  1. Эхолоты. Устройства направляют звуковые волны на дно моря. Отражаясь, они возвращаются за определенное время, которое фиксирует аппарат. Глубину вычисляют, определив время распространения волн и скорость их движения в воде.
  2. Подводные аппараты. Погружная глубоководная техника (например, батискафы), позволяет людям спуститься в пучину провести исследования или запустить приборы автономно с целью фото и видеосъемки.
  3. Космические аппараты. Снимки спутников и аппаратов на орбите помогают в изучении донной обстановки. Картинки, полученные с их помощью, помогают корректировать современные атласы Земли.

Исследования, проводимые с помощью известных приспособлений, позволили составить современную карту с изображением донного рельефа. Единицей измерения в ней служит шкала глубин. Обращаются к атласу путешественники, мореплаватели, школьники и студенты, которые изучают океан.

Географическое распространение [ править ]

 Глобальный континентальный шельф, выделен светло-зеленым

Ширина континентального шельфа значительно варьируется — нередки случаи, когда в районе практически отсутствует шельф, особенно там, где передний край надвигающейся океанической плиты погружается под континентальную кору в прибрежной зоне субдукции, например, у побережья Чили. или западное побережье Суматры . Самый большой шельф — Сибирский шельф в Северном Ледовитом океане — простирается на 1500 километров (930 миль) в ширину. Южно — Китайское море лежит на другой обширной территории континентального шельфа, то Зондского шельфа , который соединяет Борнео , Суматру и Явуна азиатский материк. Другими знакомыми водоемами, которые покрывают континентальные шельфы, являются Северное море и Персидский залив . Средняя ширина континентальных шельфов составляет около 80 км (50 миль). Глубина шельфа также варьируется, но обычно ограничивается водой глубже 100 м (330 футов). Наклон шельфа обычно довольно низкий, порядка 0,5 °; вертикальный рельеф [ требуется уточнение ] также минимален, менее 20 м (66 футов).

Хотя континентальный шельф рассматривается как физико-географическая провинция океана , он не является частью собственно глубоководного океанического бассейна, а является затопляемой окраиной континента. Пассивные континентальные окраины, такие как большинство атлантических побережий, имеют широкие и неглубокие шельфы, состоящие из толстых осадочных клиньев, образовавшихся в результате длительной эрозии соседнего континента. Активные континентальные окраины имеют узкие, относительно крутые шельфы из-за частых землетрясений, которые перемещают отложения в глубокое море.

Ширина континентального шельфа
Океан Среднее значение активной маржи (км) Максимальный активный запас (км) Среднее значение пассивной маржи (км) Максимальный пассивный запас (км) Общая средняя маржа (км) Общий максимум запаса (км)
Арктический океан 104,1 ± 1,7 389 104,1 ± 1,7 389
Индийский океан 19 ± 0,61 175 47,6 ± 0,8 238 37 ± 0,58 238
Средиземное и Черное моря 11 ± 0,29 79 38,7 ± 1,5 166 17 ± 0,44 166
Северо-атлантический океан 28 ± 1,08 259 115,7 ± 1,6 434 85 ± 1,14 434
Северный Тихий океан 39 ± 0,71 412 34,9 ± 1,2 114 39 ± 0,68 412
Южный Атлантический океан 24 ± 2,6 55 123,0 ± 2,5 453 104 ± 2,4 453
южной части Тихого океана 214 ± 2,86 357 96,1 ± 2,0 778 110 ± 1,92 778
Все океаны 31 ± 0,4 412 88,2 ± 0,7 778 57 ± 0,41 778

Марианская впадина (желоб)

Длина впадины превышает 10 000 км, но на поверхности океана она ничем не выделяется. До сих пор человечеству не удается в полном объеме ее исследовать, а причина тому — огромнейшее давление у дна впадины.

Однако, глубоководные аппараты, опускавшиеся ко дну, сумели зафиксировать наличие жизни. Живут там экстремофилы (организмы, приспособившиеся к трудным условиям). Особо примечательны ксенофиофоры — это огромные амебы, длиною до 12 см. Их приспособленность обусловлена длительным процессом эволюции в условиях:

  • низкой температуры;
  • недостаточной освещенности;
  • громадного давления.

Изучение океанических желобов

Большинство желобов не были известны до конца 20-го века. Для их изучения требуются специализированные подводные аппараты, которые не существовали до второй половины 1900-х годов.


Батискаф “Триест”

Эти глубокие океанические желоба мало пригодны для жизни большинства живых организмов. Давление воды на этих глубинах мгновенно убьет человека, поэтому никто не осмеливался исследовать дно Марианской впадины на протяжении многих лет. Однако в 1960 году двое исследователей осуществили погружение в Бездну Челленджера с помощью батискафа под названием “Триест”. И только в 2012 году (52 года спустя) другой человек отважился покорить самую глубокую точку Мирового океана. Это был кинорежиссер (известный по фильмам “Титаник”, “Аватар” и др.) и подводный исследователь Джеймс Кэмерон, который осуществил одиночное погружение с помощью батискафа “Deepsea Challenger” и достиг дна в котловине Челленджера Марианской впадины. Большинство других глубоководных исследовательских аппаратов, таких как Алвин (используется Океанографическим институтом Вудс-Хоул в Массачусетсе), не погружаются на большую глубину до сих пор, но все же могут опускаться примерно на 3600 метров.

Яванская или зондская впадина

Яванская или зондская впадина — одна из глубочайших в восточной части Индийского океана. Она простирается на 4-5 тыс. км вдоль южной части Зондской островной дуги. Желоб начинается у подножия материкового склона Мьянмы в виде неглубокого прогиба с шириной дна до 50 км. Затем, по направлению к острову Ява, постепенно углубляется и дно его сужается до 10 км. Максимальная глубина достигает 7730 метров, что делает его глубочайшей впадиной Индийского океана. Дно желоба к юго-востоку от Явы представляет собой ряд впадин, разделенных порогами. Склоны крутые, асимметричные, островной выше и круче океанического и более расчленен каньонами и осложнен ступенями и уступами. В северной и центральной частях дно шириной до 35 км выровнено слоем терригенных осадков с большой примесью вулканического материала, мощность которых на севере достигает 3 км. В Зондском желобе Австралийская плита подныривает под плиту Сунда, формируя зону субдукции. Он сейсмически активен и является частью Тихоокеанского огненного кольца.

Есть ли жизнь в глубинах океана

Вопрос вполне резонный, ведь сложно себе представить, как умудряются приспосабливаться живые организмы на самых больших глубинах. Известно, что большинство живых организмов не может выдержать максимальное давление, которое превышает тысячу атмосфер. Парадоксально, но глубоководный мир многообразен, несмотря на давление и температуры. Более того, им совершенно не нужен солнечный свет, который просто сюда не может попасть. Так откуда же появилась жизнь на самых больших глубинах?

На территории всех рассмотренных желобов Тихого океана есть вулканы, называемые черными курильщиками. Эти горные формирования отличаются большой вулканической активностью. Они выбрасывают в воды океана горячую воду, разогревающуюся благодаря магме, поднимающейся из недр планеты. Обогащая воду минералами, именно черные курильщики позволяют живым организмам вести свою жизнедеятельность. Одним из таких вулканов является Дайкоку, обнаруженный на сравнительно большой глубине — 414 м. Его деятельность способствует образованию озер расплавленной серы. Такое явление встречается только на спутнике Юпитера Ио.

Изучение глубоководных организмов и построение версий, объясняющих их появление, является важной научной задачей

В этом деле ученые мира концентрируют внимание опять-таки на подводных вулканах, которые, возможно, способствуют протеканию химических реакций таким образом, чтобы даже в условиях чудовищного давления появлялась жизнь. Это могло бы объяснить, как зарождалась жизнь на всей планете. Первым исследовательским судном, достигшим максимальной глубины, стал «Гломар Челленджер»

С помощью специального прибора, выпущенного в воды океана, ему удалось подробно изучить рельеф дна. Прибор был изготовлен из титаново-кобальтовой стали, что уберегло его от поломки

Первым исследовательским судном, достигшим максимальной глубины, стал «Гломар Челленджер». С помощью специального прибора, выпущенного в воды океана, ему удалось подробно изучить рельеф дна. Прибор был изготовлен из титаново-кобальтовой стали, что уберегло его от поломки.

Погружение прибора сопровождалось изрядной мистификацией. Журналисты писали о чудовищах, обитающих на дне океана. Впрочем, отчасти они были правы, ведь на глубоководный аппарат действительно было совершено нападение. Самым поразительным открытием стало обнаружение искореженного троса. Чтобы нанести ему серьезные повреждения, существо должно было обладать мощными челюстями.

Одни из самых распространенных созданий глубин — ксенофиофоры. Это самые большие амебы планеты, достигающие 10 см. Подобный гигантизм вполне частое явление для всех существ, которые переживают негативное воздействие окружающей среды в океане. Ксенофиофоры способны выстоять перед воздействием радиации, ртути и свинца. Удивительный факт — эти существа выдерживают огромное давление именно благодаря тому, что не имеют панциря. Эксперименты показали, что любая кость и даже дерево будут уничтожено давлением. На глазах деревянный брусок превратится в древесный порошок. Но в то же время одна находка поразила научный мир. Несколько лет назад был обнаружен моллюск, раковина которого не была разрушена давлением. Более того, моллюск жил в условиях воздействия сероводорода, который обычно губит этих существ. Скорее всего, моллюск просто синтезирует сероводород в белок, поэтому умудряется выживать в столь опасных условиях.

Рельеф Атлантического океана кратко — описание рельефа дна Атлантического океана

Более ста пятидесяти миллионов лет назад распался древнейший континент, который назывался Гондвана. Именно тогда образовался самый молодой океан на планете, согласно геологическим исследованиям. Изучать дно водоема начали сравнительно недавно. Первые научные исследования датируются серединой двадцатого века. 

Наличие хребта является ключевой особенностью океанического дна. В его составе несколько вершин, общая продолжительность – почти сорок тысяч километров. Хребты берут свое начало в Арктике и заканчиваются в зоне антарктического моря. Направление серединного хребта – меридиональное. С одной стороны от хребтов находится западная часть Атлантического океана, с другой стороны – восточная.

Осевая зона является рифтовой областью. Здесь можно встретить не один подводный вулкан, многие из них часто извергаются. Отмечается обилие землетрясений. На территории рифта присутствует множество уникальных минеральных источников. В них находятся солевые, металлические растворы, температура которых достигает четырехсот градусов. В водах океана происходит осаждение солей, формируются темные натеки. 

Флора и фауна

Природа океана поражает: в его акватории обитает около семидесяти форм от всех существующих форм жизни на нашей планете, причём учёные постоянно открывают новые виды не только мелких, но и крупных размеров. Растительный мир представлен различного типа водорослями, некоторые из них способны жить только у поверхности воды, некоторые – на довольно большой глубине.

Что касается представителей фауны, то большинство проживает в тропических и субтропических широтах, а одним из наиболее населённых мест является Большой Барьерный Риф, расположенный у побережья Австралии. Среди обитателей океана здесь встречаются такие представители животного мира, как рыбы, планктон, кораллы, морские черви, ракообразные, китообразные, головоногие (кальмары, осьминоги), а на побережье обитает немало птиц.

Наиболее бедна природа океана Северного Ледовитого и Арктики – в этом виноваты суровые климатические условия.

В холодных водах нашей планеты насчитывается более ста промысловых видов рыб, а также встречаются млекопитающие, приспособленные для жизни в суровых условиях: тюлени, моржи, киты, а к условиям Южного идеально приспособились, живущие на побережье морские птицы пингвины.

Почему дует ветер?9779 4.4 2

Литература[ | код]

  • Schellart, WP; Lister, G. S. Orogenic Curvature: Paleomagnetic and Structural Analyses (неопр.) // Geological Society of America. — 2004. — С. 237—254.
  • A.B. Watts, 2001. Isostasy and Flexure of the Lithosphere. Cambridge University Press. 458p.
  • Wright, D. J.; Bloomer, S. H.; MacLeod, C. J.; Taylor, B.; Goodlife, A. M. Bathymetry of the Tonga Trench and Forearc: a map series (англ.) // Marine Geophysical Researches : journal. — 2000. — Vol. 21, no. 489—511. — P. 2000.
  • «Deep-sea trench». McGraw-Hill Encyclopedia of Science & Technology, 8th edition, 1997.
  • J.W. Ladd, T. L. Holcombe, G. K. Westbrook, N. T. Edgar, 1990. «Caribbean Marine Geology: Active margins of the plate boundary», in Dengo, G., and Case, J. (eds.) The Geology of North America, Vol. H, The Caribbean Region, Geological Society of America, p. 261–290.
  • W. B. Hamilton 1988. «Plate tectonics and island arcs». Geological Society of America Bulletin: Vol. 100, No. 10, pp. 1503–1527.
  • R. L. Fisher and H. H. Hess, 1963. «Trenches» in M. N. Hill (ed.) The Sea v. 3 The Earth Beneath the Sea. New York: Wiley-Interscience, p. 411–436.

Из чего состоит гидросфера

Таким образом, известные нам океаны – это части Мирового океана, расположенные между континентами и архипелагами. Они постоянно обмениваются между собой водными массами, а некоторые течения охватывают целых три океана подряд. Например, холодное течение Западных Ветров, несущее свои воды недалеко от Антарктиды, подчиняясь ветрам, которые дуют с запада на восток, не встречает на своём пути крупных участков суши, а потому полностью огибает планету, соединяя воды Индийского, Тихого и Атлантического океанов.

Океанографы выделяют следующие океаны (они же части Мирового океана):

  1. Тихий. Самый большой океан занимает площадь 178,68 млн. км2, при этом средняя глубина океана достигает почти четырёх километров, а водная поверхность имеет самую высокую среднюю температуру океана – плюс 19,4°С. Интересно, что именно здесь расположена самая глубокая точка Земли – Марианский жёлоб, глубина которого превышает 11 км. Здесь находится самая высокая подводная гора мира – вулкан Мауна-Кеа: несмотря на то, что он возвышается над океаном на 4 тыс. м, его высота от океанического дна превышает 10 км, будучи почти на 2 км выше Эвереста.
  2. Атлантический. Имеет вытянутую форму, тянется с севера на юг, его площадь составляет 91,66 млн. км2, средняя глубина океана – 3,5 км, а самой глубокой точкой является Жёлоб Пуэрто-Рико с глубиной более 8,7 км. Именно здесь протекает самое мощное тёплое течение мира, Гольфстрим, а также находится одно из самых загадочных и таинственных мест планеты, Бермудский треугольник.
  3. Индийский. Площадь – 76,17 млн.км2, а средняя глубина превышает 3,7 км (наиболее глубокой его точкой является Яванская впадина глубиной более 7,2 км).
  4. Северный Ледовитый. Площадь – 14,75 млн. км2, а средняя глубина – около 1,2 км, при этом самая большая глубина океана была зафиксирована в Гренландском море и немного превышает 5,5 км. Что касается средней температуры воды на поверхности, то она составляет +1°С.
  5. 5. Южный (Антарктический). Весной 2000 г. было принято решение в районе Антарктиды выделить отдельный океан между 35° ю. ш. (ориентируясь на признаки циркуляции воды и атмосферы) до 60° ю. ш. (ориентируясь по форме рельефа дна). Официально его размеры составляют 20,327 млн. км2 – именно эту площадь надо отнять в вышеприведённых данных трёх океанов, Тихого, Атлантического и Индийского. Что касается средней глубины Южного, то она составляет около 3,5 км, а самым глубоким местом является жёлоб Южно-Сандвичев – его глубина около 8,5 км.

Моря, заливы и проливы

Мировые океаны возле побережья делятся на моря, заливы, проливы. Прямое сообщение с ними имеет залив – часть океана, которая глубоко не впадает в сушу, и всегда имеет общие с ним воды.

А вот моря могут находиться на расстоянии нескольких тысяч километров, быть окружёнными с трёх сторон сушей, но одна сторона у них всегда открыта и соединена с океаном проливами, заливами, другими морями. Моря и океаны всегда связаны между собой, если этого сообщения нет, каких бы огромных размеров не был бы водоём и какой бы солёностью не обладал, он считается озером.

Литература

  • Schellart, WP; Lister, G. S. Orogenic Curvature: Paleomagnetic and Structural Analyses (неопр.) // Geological Society of America. — 2004. — С. 237—254.
  • A.B. Watts, 2001. Isostasy and Flexure of the Lithosphere. Cambridge University Press. 458p.
  • Wright, D. J.; Bloomer, S. H.; MacLeod, C. J.; Taylor, B.; Goodlife, A. M. Bathymetry of the Tonga Trench and Forearc: a map series (англ.) // Marine Geophysical Researches : journal. — 2000. — Vol. 21, no. 489—511. — P. 2000.
  • «Deep-sea trench». McGraw-Hill Encyclopedia of Science & Technology, 8th edition, 1997.
  • J.W. Ladd, T. L. Holcombe, G. K. Westbrook, N. T. Edgar, 1990. «Caribbean Marine Geology: Active margins of the plate boundary», in Dengo, G., and Case, J. (eds.) The Geology of North America, Vol. H, The Caribbean Region, Geological Society of America, p. 261–290.
  • W. B. Hamilton 1988. «Plate tectonics and island arcs». Geological Society of America Bulletin: Vol. 100, No. 10, pp. 1503–1527.
  • R. L. Fisher and H. H. Hess, 1963. «Trenches» in M. N. Hill (ed.) The Sea v. 3 The Earth Beneath the Sea. New York: Wiley-Interscience, p. 411–436.

Погружение в глубоководные желоба

Такие погружения стали возможными относительно недавно. Это неудивительно, ведь на дне таких вот впадин очень высокое давление. Если человека переместить на дно глубокого желоба без специального снаряжения, то его разорвет. Без шуток, на одном сайте я читал историю о 2-х подводниках. Какие-то механизмы в их подводной лодке перестали работать, люк разгерметизировался, и они буквально «вылились» из трюма. Вот еще несколько опасностей, которые могут произойти с подводниками:

  • декомпрессионная болезнь (появление пузырьков в крови, возникает из-за перепада давления);
  • нарушение кровообращения;
  • гиперкапния (перенасыщение крови углекислым газом).

Будущее исследование глубоководных впадин

Изучение глубоководного моря дорогой и сложный процесс, хотя научные и экономические награды могут быть весьма значительными. Человеческая разведка (например, глубоководное погружение Кэмерона) опасна. Будущие исследования могут хорошо полагаться (по крайней мере частично) на автоматизированные беспилотные аппараты, точно так же, как астрономы используют их для изучения отдаленных планет. Существует множество причин продолжать изучение глубин океана; они остаются наименее изученными земными средами. Дальнейшие исследования помогут ученым понять действия тектоники плит, а также выявить новые формы жизни, которые адаптировались к самым неприветливым местам обитания на планете.

Мне нравится1Не нравится

Шельф Атлантического океана

Шельфовые зоны также называют материковой отмелью. Это выровненные, подводные участки на окраинах континентов, которые примыкают к земле, имеют общие с ней рельефные и геологические особенности. 

В Атлантике площадь материковых отмелей составляет около шести миллионов квадратных километров. Здесь находится множество масштабных архипелагов, заливов.  Южная, Северная Америка, Африка имеют выход к узкой шельфовой полосе. Максимальная ширина шельфа приходится на северо-запад Европы. Склоны материковой отмели рассекают подводные каньоны. Они отличаются ступенчатостью, крутизной.

Формирование океанических желобов


Океанический желоб

В мире множество высоких вулканов и гор, но глубокие океанические желоба затмевают любую из континентальных возвышенностей. Как формируются эти впадины? Короткий ответ исходит из геологии и изучения движений тектонических плит, что относятся к землетрясениям, а также к вулканической активности.

Ученые обнаружили, что глубокие блоки земной коры движутся на поверхности мантии Земли. Как правило, океаническая кора пододвигается под островные дуги или континентальную окраину. Граница, где они встречаются – это места, которые представляют собой глубокие океанические желоба. Например, Марианская впадина, расположенная на дне Тихого океана, рядом с Марианской островной дугой, недалеко от побережья Японии, является результатом так называемой «субдукции». Марианский желоб образовался на стыке Евразийской и Филиппинской плит.

Формирование океанических желобов

Океанический желоб

В мире множество высоких вулканов и гор, но глубокие океанические желоба затмевают любую из континентальных возвышенностей. Как формируются эти впадины? Короткий ответ исходит из геологии и изучения движений тектонических плит, что относятся к землетрясениям, а также к вулканической активности.

Ученые обнаружили, что глубокие блоки земной коры движутся на поверхности мантии Земли. Как правило, океаническая кора пододвигается под островные дуги или континентальную окраину. Граница, где они встречаются — это места, которые представляют собой глубокие океанические желоба. Например, Марианская впадина, расположенная на дне Тихого океана, рядом с Марианской островной дугой, недалеко от побережья Японии, является результатом так называемой «субдукции». Марианский желоб образовался на стыке Евразийской и Филиппинской плит.

Это интересно: Географические следствия вращения Земли вокруг своей оси

Курило-Камчатский желоб

Впадина расположена к востоку от побережья Курильских островов и доходит на севере до Камчатского полуострова. Далее она соединяется с Алеутским желобом, в то время как на юге переходит в Японский желоб. Ранее использовалось название Тускарора. Желоб имеет ширину в 59 км, а его протяженность оценивается в 2170 км. В самой глубокой точке с координатами 44°00′46″ с. ш. и 150°19′13″ в. д. глубина впадины составляет 9917 м. Начинается желоб на уровне, который соответствует 6000 м ниже поверхности воды, а далее его стенки смыкаются под углом, равным 7°. Здесь наблюдается высокая сейсмическая активность.

Изучение океанических желобов

Большинство желобов не были известны до конца 20-го века. Для их изучения требуются специализированные подводные аппараты, которые не существовали до второй половины 1900-х годов.

Батискаф «Триест»

Эти глубокие океанические желоба мало пригодны для жизни большинства живых организмов. Давление воды на этих глубинах мгновенно убьет человека, поэтому никто не осмеливался исследовать дно Марианской впадины на протяжении многих лет. Однако в 1960 году двое исследователей осуществили погружение в Бездну Челленджера с помощью батискафа под названием «Триест». И только в 2012 году (52 года спустя) другой человек отважился покорить самую глубокую точку Мирового океана. Это был кинорежиссер (известный по фильмам «Титаник», «Аватар» и др.) и подводный исследователь Джеймс Кэмерон, который осуществил одиночное погружение с помощью батискафа «Deepsea Challenger» и достиг дна в котловине Челленджера Марианской впадины. Большинство других глубоководных исследовательских аппаратов, таких как Алвин (используется Океанографическим институтом Вудс-Хоул в Массачусетсе), не погружаются на большую глубину до сих пор, но все же могут опускаться примерно на 3600 метров.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector