Раздел 3. прикладная экология

Содержание:

Дым от лесных пожаров скапливается в стратосфере

Два года назад экипаж немецкого ледокола Polarstern, вмороженного в ледяной лед Арктики, осветил ночное небо зеленым лазером. Отраженный свет луча должен был помочь исследователям изучать ледяные зимние облака. Но вместо этого луч обнаружил нечто неожиданное — на высоте более 7 километров находился слой неизвестных частиц толщиной в несколько километров. Позже исследователи пришли к выводу, что дымка образовалась от огромных лесных пожаров, охвативших тем летом Сибирь.

Ранее я рассказывал о том, что ученые заметили выпадение сажи в Арктике на морской лед, что впоследствии может привести к его нагреву и таянию. Соответственно, это вызовет изменение климата в регионе. Теперь речь пошла о еще одном последствии лесных пожаров, о котором международная группа ученых сообщает в своем исследовании, опубликованном в издании Atmospheric Chemistry and Physics.

Предположительно озоновый слой уничтожает дым от лесных пожаров

Как отмечают ученые, с конца 1970-х годов спутники могут отслеживать частицы дыма, которые хорошо видны из космоса, поскольку являются сильными поглотителями ультрафиолетового излучения. Однако до 2017 года ими не было зафиксировано признаков дыма, проникающего в стратосферу в сколько-нибудь заметном количестве. Событие, связанное с задымлением в Арктике, вызывает у экспертов особую тревогу. Ранее предполагалось, что что Арктика будет действительно чистой.

Запаситесь грелками

Конечно, электропростыня — это результат технического прогресса, но горячая вода в резиновой грелке или простой пластиковой бутылке была, есть и будет одним из самых простых и эффективных средств для обогрева кровати или тела. Недаром слуги клали медные грелки в кровати своих господ еще несколько веков назад. Вот и сейчас правила игры не изменились: положите грелку в свою постель перед сном — и наслаждайтесь теплом.

Стоит отметить, что в продаже есть специальные грелки, которые можно класть в микроволновую печь. Нагреваете ее в течение одной минуты — и можно пользоваться. Кроме того, существуют солевая грелка: она нагревается за счет кристаллизации соли. Температура такой грелки достигает 52 градуса по Цельсию.

Динамическая и кинематическая вязкость воздуха при различных температурах

При выполнении тепловых расчетов необходимо знать значение вязкости воздуха (коэффициента вязкости) при различной температуре. Эта величина требуется для вычисления числа Рейнольдса, Грасгофа, Релея, значения которых определяют режим течения этого газа. В таблице даны значения коэффициентов динамической μ и кинематической ν вязкости воздуха в диапазоне температуры от -50 до 1200°С при атмосферном давлении.

Коэффициент вязкости воздуха с ростом его температуры значительно увеличивается. Например, кинематическая вязкость воздуха равна 15,06·10-6 м2/с при температуре 20°С, а с ростом температуры до 1200°С вязкость воздуха становиться равной 233,7·10-6 м2/с, то есть увеличивается в 15,5 раз! Динамическая вязкость воздуха при температуре 20°С равна 18,1·10-6 Па·с.

При нагревании воздуха увеличиваются значения как кинематической, так и динамической вязкости. Эти две величины связаны между собой через величину плотности воздуха, значение которой уменьшается при нагревании этого газа. Увеличение кинематической и динамической вязкости воздуха (как и других газов) при нагреве связано с более интенсивным колебанием молекул воздуха вокруг их равновесного состояния (согласно МКТ).

Динамическая и кинематическая вязкость воздуха (в таблице даны значения вязкости, увеличенные в 106 раз)
t, °С μ·106, Па·с ν·106, м2/с t, °С μ·106, Па·с ν·106, м2/с t, °С μ·106, Па·с ν·106, м2/с
-50 14,6 9,23 70 20,6 20,02 350 31,4 55,46
-45 14,9 9,64 80 21,1 21,09 400 33 63,09
-40 15,2 10,04 90 21,5 22,1 450 34,6 69,28
-35 15,5 10,42 100 21,9 23,13 500 36,2 79,38
-30 15,7 10,8 110 22,4 24,3 550 37,7 88,14
-25 16 11,21 120 22,8 25,45 600 39,1 96,89
-20 16,2 11,61 130 23,3 26,63 650 40,5 106,15
-15 16,5 12,02 140 23,7 27,8 700 41,8 115,4
-10 16,7 12,43 150 24,1 28,95 750 43,1 125,1
-5 17 12,86 160 24,5 30,09 800 44,3 134,8
17,2 13,28 170 24,9 31,29 850 45,5 145
10 17,6 14,16 180 25,3 32,49 900 46,7 155,1
15 17,9 14,61 190 25,7 33,67 950 47,9 166,1
20 18,1 15,06 200 26 34,85 1000 49 177,1
30 18,6 16 225 26,7 37,73 1050 50,1 188,2
40 19,1 16,96 250 27,4 40,61 1100 51,2 199,3
50 19,6 17,95 300 29,7 48,33 1150 52,4 216,5
60 20,1 18,97 325 30,6 51,9 1200 53,5 233,7

След от самолета в небе — откуда он берется?

Задумывались ли вы когда-нибудь почему в небе после реактивного самолета остается белая “лыжня”, которая красиво смотрится на фоне синего неба? Все мы наблюдали за тем, как она долго держится, а потом медленно расходится. На самом деле мы видим в небе лед. Он возникает в результате того, что холодная атмосфера встречается с влажным и горячим выхлопом самолета. Вода в результате сразу же превращается в мелкие кристаллики.

Если след плохо виден и быстро рассеивается, значит на той высоте, где летит самолет, низкая влажность. Если след четкий и держится долго, соответственно, в воздухе повышенная влажность. Это означает, что погода в ближайшее время может ухудшится, возможна даже гроза.

Озоновый слой прогревается сильнее, чем тропосфера

Определение термина и общие сведения

Показателем степени нагревания воздуха является его температура. Характер ее изменения и распределения в слоях атмосферы называется тепловым режимом. Основной фактор, определяющий его параметры, — теплообмен между разными слоями атмосферы и окружающей средой. Верхние слои нагреваются за счет солнечной радиации довольно слабо. Основным источником повышения температуры приповерхностных воздушных слоев служит тепло, получаемое при попадании солнечных лучей в литосферу и гидросферу.

Влияние широты

В разных широтах воздушные массы нагреваются неодинаково. Значение температуры определяется углом падения солнечных лучей на земную поверхность в исследуемой зоне. Чем более отвесно они падают, тем сильней прогревают нижние слои атмосферы. Как температура воздуха зависит от географической широты:

  1. В жарких климатических поясах, близких к экватору (нулевая широта), угол освещения имеет значение, приближающееся к 90°.
  2. По мере отдаления от экватора по направлению к тропикам — уменьшается к 60°.
  3. Для пояса умеренных широт характерен угол падения лучей в диапазоне от 60 до 30°.
  4. В холодных поясах продолжается уменьшение его значения вплоть до 0° в самых высоких широтах Арктики и Антарктики.

Таким образом, чем выше широта, тем ниже температура. Угол падения солнечных лучей в определенной местности можно найти так: отнять от 90° значение широты, на которой она расположена. Температурный режим зависит от расстояния между точкой измерения и уровнем моря. Поэтому верно утверждение: с высотой температура воздуха изменяется, уменьшаясь на один градус при подъеме на один километр. Эта взаимосвязь определяется двумя причинами:

  • удаление от поверхности земли;
  • уменьшение угла падения солнечного света.

https://youtube.com/watch?v=F9KRFO8YCsQ

Земля вращается вокруг Солнца, поэтому в течение разных промежутков времени (сутки, месяц, год) ее поверхность освещается под разными углами. Помимо солнечной радиации, большое влияние на температурные значения оказывает география перемещений воздушных масс. Например, от холодного арктического воздуха температура будет понижаться, а от теплого с Гольфстрима — повышаться.

Подстилающая поверхность

Важным фактором при понимании, от чего зависит температура воздуха, является понятие подстилающей поверхности. Это один из внутренних климатообразующих факторов, включающий в себя соотношение океана и суши на местности, ее рельеф, структуру деятельного слоя климатической зоны. Он влияет на эффективность излучения с поверхности и количество тепла, затраченного на испарение.

Способы и единицы измерения

Единица измерения температуры в СИ (общепринятая международная система единиц измерения) — Кельвин. Начало шкалы Кельвина совпадает с абсолютным нулем — точкой прекращения всех термодинамических процессов, которая считается недостижимой. Замерзание воды по этой шкале начинается при +273°К.

Самое широкое распространение получили температурные измерения по шкале Цельсия. Отсчетными точками для нее были взяты температуры таяния льда (0 °C) и кипения воды (100 °C). В США чаще всего пользуются шкалой Фаренгейта. Нормальная температура человеческого тела соответствует по ней 96°F, а «огненным» значением, необходимым для возгорания бумаги, называется известный роман-антиутопия Рэя Бредбери «251 градус по Фаренгейту».

Измеряться температурные данные могут разного типа термометрами. Для бытовых измерений используются жидкостные стеклянные термометры, в которых рабочей жидкостью может быть спирт или ртуть. Для точных метеорологических измерений термометр помещается в специальную будку, расположенную на высоте двух метров над землей. Прибор обязательно должен находиться в тени, иначе он будет измерять температуру солнечных лучей, а не воздуха.

Для непрерывного измерения и регистрации степени нагрева воздушных масс метеорологами используются термографы, основной элемент которого — биметаллический термометр.

Водяной пар в атмосфере

Эту тему лучше прочитать вдумчиво, воображая происходящее

В атмосфере присутствует водяной пар (маленькие частички воды испарившиеся с поверхности водоемов и суши)

От чего зависит испарение:

  1. Температура (чем выше температура, тем больше воды испариться, следовательно будет больше водяного пара в атмосфере)

  2. Ветра (чем сильнее ветер, тем выше испарение)

  3. Рельефа

Чем больше температура — тем больше абсолютная влажность (тем больше водяного пара)

Подсказка!

  1. При равном значении температуры: растет относительная влажность и растет количество водяного пара

  2. При равном значении водяного пара: растет температура, уменьшается относительная влажность.

  3. При равном значении относительной влажности: растет количество водяного пара и растет температура.

Презентация на тему: » Выполнила учитель географии Власенко С.Н.. 1.Как нагревается воздух атмосферы? 2.Какие факторы влияют на температуру воздуха?» — Транскрипт:

1

Выполнила учитель географии Власенко С.Н.

2

1. Как нагревается воздух атмосферы? 2. Какие факторы влияют на температуру воздуха?

3

1. Как наклон земной оси влияет на освещенность? 2. Где и когда Солнце находится в зените в разные сезоны года?

4

Воздух прозрачен, и поэтому солнечные лучи свободно проходят сквозь него, практически его не нагревая. Они нагревают земную поверхность, От неё уже нагревается и воздух, находящийся близко к ней ( тропосфера ) Рассмотрим главную причину различия температур на Земле.

6

Эта причина – разность угла падения лучей на Земную поверхность. Пучок лучей одинаков, угол различен, площадь различна. Чем больше площадь, тем меньше нагрев. Чем меньше угол, тем меньше нагрев.

7

Их границами служат тропики и полярные круги Возникли из-за различия среднегодового угла падения солнечных лучей на земную поверхность.

8

угол падения солнечных лучей уменьшается при движении к полюсам Зима (ХОЛОДНО) Угол маленький. 35º Приполярные области

9

Лето (жарко) 80º Экватор Экватор Угол падения солнечных лучей- больше, и поэтому солнце дает больше тепла

10

ЗАПОМНИ ! Угол падения солнечных лучей при движении от экватора к полюсам УМЕНЬШАЕТСЯ поэтому и tº понижается

11

Температура воздуха зависит от подстилающей поверхности. Океан – аккумулятор тепла

12

Причиной того, что самые жаркие и холодные точки на Земле не совсем совпадают с экватором и полюсами является циркуляция (перемешивание) атмосферы

13

Амплитуда- разница между самой высокой и низкой температурой.

16

Дни недели Температура воздуха Атмосферное давление Облачность/ осадки Понедельник -7 о 755 мм.рт.ст.ясно Вторник -8 о 753 мм.рт.ст.ясно Среда -7 о 754 мм.рт.ст.ясно Четверг -7 о 752 мм.рт.ст.ясно Пятница -3 о 744 мм.рт.ст.Переменная облачность Суббота -1 о 740 мм.рт.ст.снег Воскресенье 0 о 0 о 739 мм.рт.ст.снег Понедельник +1 о 738 мм.рт.ст.облачно Вторник +1 о 738 мм.рт.ст.снег Среда 0 о 0 о 739 мм.рт.ст.облачно Температура воздуха Дни недели -8 о -7 о -6 о -5 о -4 о -3 о -2 о -1 о 0 о 0 о -9 о +1 о +2 о Понедельник Вторник Среда ЧетвергПятница ВоскресеньеСуббота Понедельник Вторник Среда

17

Дни недели Температура воздуха Атмосферное давление Облачность/ осадки Понедельник -7 о 755 мм.рт.ст.ясно Вторник -8 о 753 мм.рт.ст.ясно Среда -7 о 754 мм.рт.ст.ясно Четверг -7 о 752 мм.рт.ст.ясно Пятница -3 о 744 мм.рт.ст.Переменная облачность Суббота -1 о 740 мм.рт.ст.снег Воскресенье 0 о 0 о 739 мм.рт.ст.снег Понедельник +1 о 738 мм.рт.ст.облачно Вторник +1 о 738 мм.рт.ст.снег Среда 0 о 0 о 739 мм.рт.ст.облачно Понедельник Вторник Среда ЧетвергПятница ВоскресеньеСуббота Понедельник Вторник Среда Температура воздуха Дни недели -8 о -7 о -6 о -5 о -4 о -3 о -2 о -1 о 0 о 0 о -9 о +1 о +2 о Атмосферное д а в л е н и е мм. рт. ст. снег Суббота Воскресенье Вторник облачно Понедельник Среда Переменная облачность Пятница

18

Температура воздуха Дни недели -8 о -7 о -6 о -5 о -4 о -3 о -2 о -1 о 0 о 0 о -9 о +1 о +2 о Атмосферное д а в л е н и е мм. рт. ст. Понедельник Вторник Среда ЧетвергПятница ВоскресеньеСуббота Понедельник Вторник Среда Атмосферное давление высокое, ясно и холодно. Атмосферное давление пониженное, стало теплее, пасмурно и временами идет снег. Погода резко меняется

Как бороться с воздушными пробками

Выше мы разобрали основные причины, почему воздушит систему отопления при централизованной или автономной подаче теплоносителя. Теперь рассмотрим, как избежать возникновения воздушных пробок и как бороться с последствиями этой проблемы.

Как спустить воздух в многоэтажном доме

Ключом или отверткой откручивают клапан до тех пор, пока не послышится характерное шипениеИсточник build.ru

В современных системах отопления на радиаторы устанавливают краны (клапаны) Маевского, которые позволяют стравить воздух с батареи. Если такая запорная арматура есть в вашем доме или квартире, то воспользуйтесь данным устройством. Для этого подставьте под край радиатора в зоне крана миску или глубокую тарелку, после чего начинайте откручивать клапан до тех пор, пока не услышите характерное шипение. Теперь остается только ждать. Когда потечет вода, не спешите завинчивать кран обратно, но спустите хотя бы полведра воды, чтобы убедиться в отсутствии газа в жидкости. Такую операцию проделайте со всеми батареями, где неравномерно нагреваются секции.

При завоздушивании водяной системы отопления в многоэтажном доме клапан Маевского может выручить далеко не всегда – здесь нужны более радикальные меры. В старых домах хрущевской и даже брежневской постройки сантехники иногда на верхнем этаже в основной лежак подачи теплоносителя вертикально врезали полдюймовую трубу с краном для спуска воздуха. Если такая труба есть в вашем подъезде, то ликвидировать пробку не составит никакого труда – только подставляй ведра и сливай воду в унитаз ближайшей квартиры до тех пор, пока кран не перестанет «чихать». Это будет указывать на то, что газ из теплоносителя ликвидирован.

Таким краном на верхнем этаже можно спустить воздух во всем стояке многоэтажного домаИсточник yandex.ru

Но как быть тем, жителям городских квартир, где нет такого приспособления, которое позволяет стравить воздух из подъезда? Да, конечно, положение может спасти шаровый кран, который вместо заглушки устанавливают на радиаторе в самой верхней квартире. Сливая воду при помощи такой запорной арматуры до тех пор, пока кран не перестанет «чихать», вы сможете развоздушить часть системы. Конечно, это не совсем удобно для жильцов той квартиры, ведь придется спустить от пяти до двадцати ведер (зависит от количества этажей в доме), но, это единственный оптимальный выход из создавшейся ситуации.

Удаление воздуха в системе отопления таким путем не означает, что будут горячими все радиаторы в квартире или во всем подъезде – это касается только того стояка, куда подключена батарея с запорной арматурой. То есть, комнаты в квартире многоэтажного здания обогреваются от разных стояков, что вы сами можете увидеть, посмотрев, в какую сторону отходят трубы контура. Например, радиатор, установленный под окном балконного блока, как правило, подключен вместе с отопительным прибором соседа, находящегося за стенкой и не имеет ничего общего с обогревателями из других комнат.

Придется открутить гайку, которая соединяет трубу горячего водоснабжения с полотенцесушителемИсточник stroy-podskazka.ru

Теперь рассмотрим проблему завоздушивания системы в стояке, где установлен полотенцесушитель. Это вообще отдельная труба, к которой не подключаются квартирные радиаторы, если, конечно, кто-то не сделал этого самостоятельно. Когда сушилки по всему стояку горячие, но ваша при этом холодная, то проблема именно в вашем отопительном приборе, но если холодный весь стояк, значит, нужно спускать воду в ванной на самом верхнем этаже здания. Если при монтаже сантехники предусмотрели кран для стравливания воздуха, то можно его попросту открыть, и действовать так, как это описано выше по тексту. Но когда такая запорная арматура отсутствует, то можно открутить сушилку с одной стороны от трубы отопления (только не полностью) и собирать стекающую воду в ведро, пока не ликвидируете пробку.

Если все сушилки на стояке подключены на напрямую, а через байпас (врезаны сбоку в трубу отопления), но ваш полотенцесушитель холодный, а труба горячая, значит, именно в вашем обогревательном приборе скопились газы. Это говорит о том, что, ликвидировать воздушную пробку можно только из вашей ванной комнаты. Но старые сушилки, сделанные из стальных труб, просто вварены в стояк без какой-либо запорной арматуры, и спустить воздух здесь невозможно. В таком случае, вам придется какое-то время выжидать, пока теплоноситель не ликвидирует воздушную пробку собственным напором.

Для справки: в многоэтажных домах с централизованным отоплением номинальное давление теплоносителя (в зависимости от высоты здания) бывает от 4 до 12 бар, а при опрессовке во время запуска системы осенью, может достигать 14 бар.

Атмосферные осадки

Вся выпадающая влага на землю получила название атмосферных осадков.

С причинами формирования осадков познакомимся на рисунке.

Имеется несколько видов атмосферных осадков.

Существенное число атмосферных осадков выпадает из облаков. Когда произойдет накопление максимального числа влаги, она уже не способна задерживаться в облаке, тогда мы наблюдаем дождь.

Дождь 

Летом возможно увидеть, как падают ледяные шарики – град. Как же они создаются? Теплый воздух поднимается кверху и уносит тучи. А мы уже знаем, что с подъемом становится прохладнее. Вот и застывают капли, при малых температурах, преображаясь в еще одну разновидность атмосферных осадков.

Град 

В холодный сезон можно наблюдать, как падают снежинки. Данный вид осадков играет значительную роль для культурных растений. Например, посевы озимых культур он предохраняет от морозов. Весной он превращается в воду, которая впитываясь в почву, обеспечивает влагу растениям. 

Снег 

Каждый может наблюдать, как падает дождь. А не задумывались, откуда берутся капельки влаги на растениях утром или вечером? Эти капельки влаги получили название «роса» и считаются одним из видов осадков, причиной образования которых является быстрое охлаждение почвы. Воздух у ее поверхности за день накопил достаточно влаги, избыток которой оседает вечером на предметах.

Роса 

Причиной выпадения таких осадков как иней или изморозь, считается охлаждение почвы в темное время суток до температуры ниже нуля. В зимнее время можно наблюдать красивые наросты из кристаллов на различных предметах, это тоже будет изморозь.

Изморозь 

На землю попадает немалое количество осадков, замер которых производится прибором, получившим название осадкомер. Принцип его работы заключается в определении толщины слоя растаявших осадков. Такая проба берется за конкретный период времени. На метеостанциях часто используется осадкомер Третьякова. Познакомимся с данным видом осадкомера на картинке.

Годовое количество распределения осадков отражают на специальных диаграммах. На этих диаграммах месячное количество осадков обозначают в виде столбиков.

На количество атмосферных осадков и на их распределение по земной поверхности влияет широта места, направление господствующих ветров, близость или удаленность морей, рельеф местности, теплые и холодные морские течения.

Познакомимся с особенностями распределения осадков по земной поверхности.

Распределения температуры и осадков по территории Земли во многом схожи. Количество атмосферных осадков уменьшается от экватора к полюсам. Наибольшее количество осадков выпадает в районе экватора – более 3000 мм осадков. Причинами такого количества осадков являются высокие температуры воздуха и большое испарение. В тропических широтах расположены сухие зоны – осадков менее 200 мм. Здесь располагается основная масса пустынь. Умеренные широты характеризуются различным количеством осадков от 500 мм до 1000 мм. В полярных районах осадков всего 100-200 мм в год, во многом это связано с низкими температурами и малым содержанием влаги.

5.3. Ветры и их происхождение

Воздух непрерывно движется: он поднимается —
восходящее движение, опускается — нисходящее
движение. Движение воздуха в горизонтальном направлении называется ветром.
Причиной возникновения ветра является неравномерное распределение давления
воздуха на поверхность Земли, которое вызвано неравномерным распределением
температуры. При этом воздушный поток движется от мест с большим давлением в
сторону, где давление меньше.

При ветре воздух движется не равномерно, а
толчками, порывами, особенно у поверхности Земли. Существует много причин,
которые влияют на движение воздуха: трение воздушного потока о поверхность
Земли, встреча с препятствиями и др. Кроме того, воздушные потоки под влиянием
вращения Земли отклоняются в Северном полушарии вправо, а в Южном — влево.

Рис. 28.
Шкала силы ветра

Ветер характеризуется скоростью,
направлением и силой.

Скорость ветра измеряется в метрах в секунду
(м/с), километрах в час (км/ч), баллах (по шкале Бофорта от 0 до 12, в настоящее
время до 13 баллов). Скорость ветра зависит от разницы давления и прямо
пропорциональна ей: чем больше разность давления (горизонтальный
барический градиент
), тем больше скорость ветра. Средняя многолетняя
скорость ветра у земной поверхности 4-9 м/с, редко более 15 м/с. В штормах и
ураганах (умеренных широт) — до 30 м/с, в порывах до 60 м/с. В тропических
ураганах скорости ветра доходят до 65 м/с, а в порывах могут достигать 120 м/с.
На рис. 28 представлена шкала силы ветра.

Сила ветра зависит от его скорости и
показывает, какое динамическое давление оказывает воздушный поток на какую-либо
поверхность. Сила ветра измеряется в килограммах на квадратный метр (кг/м2).

Самая обширная зона ветров земного шара
находится в тропических широтах, где дуют пассаты.

Пассаты
— постоянные ветры тропических широт. Они распространены в зоне от 30 ° с.ш. до
30 ° ю.ш., т. е. ширина каждой зоны 2-2,5 тыс. км. Это устойчивые ветры
умеренной скорости (5-8 м/с). Образуются они потому, что в экваториальном поясе
нагретый воздух поднимается вверх, а на его место с севера и юга приходит
тропический
воздух. Пассаты имели и имеют большое практическое значение в
мореплавании, особенно раньше, для парусного флота, когда их называли «торговыми
ветрами». Эти ветры образуют устойчивые поверхностные течения в океане вдоль
экватора, направленные с востока на запад. Именно они привели к Америке
каравеллы Колумба.

Бризы
местные ветры, которые днем дуют с моря на сушу, а ночью с суши на море. В связи
с этим различают дневной и ночной бризы. Дневной (морской) бриз образуется в
результате того, что днем суша нагревается быстрее, чем море, и над ней
устанавливается более низкое давление. В это время над морем (более охлажденным)
давление выше и воздух начинает перемещаться с моря на сушу. Ночной (береговой)
бриз дует с суши на море, так как в это время суша охлаждается быстрее, чем
море, и пониженное давление оказывается над водной поверхностью — воздух
перемещается с берега на море.

Муссоны
— это ветры, аналогичные бризам, но меняющие свое направление в зависимости от
времени года и охватывающие огромные площади. Зимой они дуют с суши на море,
летом — с моря на сушу. Зимой материк более холодный и, следовательно, давление
над ним выше. Летом, наоборот, суша прогрета и давление над ней ниже. Тогда
влажный океанический воздух перемещается на сушу. Со сменой муссонов происходит
смена сухой малооблачной зимней погоды на дождливую летнюю.

После приготовления выпечки оставьте дверцу духовки открытой

Возможно, это не самый безопасный метод нагреть квартиру, так что если у вас есть маленькие дети или любопытные домашние животные, откажитесь от затеи с духовкой. Но если вы уверены, что никто не залезет в горячую духовку, пока вы отвернетесь, то смело используйте этот способ обогрева кухни и соседних комнат.

Предположим, вкусные печеньки готовы, вы уже выключили духовку. Тогда оставьте дверцу духового шкафа открытой, пусть тепло выходит наружу. И хотя кухня, на которой постоянно готовят, — это и так самое жаркое место в доме, так вы сможете погреться здесь чуть дольше, чем обычно.

ПОМНИТЕ: духовка должна быть выключена!

Влияние коэффициента избытка воздуха на потребление топлива

Нельзя недооценивать влияние, которое оказывает коэффициент избытка воздуха на тепловую эффективность печей. На рис. 13 показана зависимость между содержанием кислорода в дымовых газах печи (и соответственно коэффициентом избытка воздуха в печи) и расчетным потреблением топлива, полученная при исследовании режимов эксплуатации печей вакуумного блока установки АВТ одного из предприятий отрасли.

Рис. 13. Пример зависимости между содержанием О2в дымовых газах печи и расчетным потреблением топлива

Согласно этой зависимости, увеличение содержания кислорода на 3% об. приводит к увеличению потребления топлива не менее чем на 10%. Если речь идет о печах большой производительности, то экономический эффект может быть очень значительным. Например, в указанном случае эксплуатация печей проводилась с текущим уровнем содержания кислорода в дымовых газах печей более 12% об. В этом примере суммарный расчетный эффект снижения потребления топлива для двух печей составил более 1000 кг газообразного топлива в 1 ч, что соответствует экономии топлива 8000 т/год и экономическому эффекту более 60 млн. руб. в год.

Рис. 14. Зависимость между тепловыми потерями вследствие увеличенного избытка О2 и выходной температурыдымовых газов

График, приведенный на рис. 14 , показывает влияние избытка воздуха и температуры дымовых газов на выходе на тепловую эффективность печей: сколько теплоты теряется в зависимости от количества избыточного воздуха (определяемого из измерений избыточного кислорода в дымовых газах).

Из графика также видно, что потери теплоты растут с увеличением температуры дымовых газов.

На большинстве предприятий считается нормальным, чтобы температура дымовых газов на входе в дымовую трубу была не ниже 200 °С. При более низкой температуре возникает опасность достижения температуры точки росы, что приводит к повреждению оборудования.

Серьезные предпосылки тому, что двигатель хорошо греется, а печка дует холодным воздухом в любой позиции терморегулятора отопителя

Приучите себя постоянно сканировать температуру мотора. Кто знает, когда остановится помпа или система завоздушится выхлопными газами, которые травит из-под пробитой прокладки головки блока цилиндров (ГБЦ). В каждой из этих ситуаций нарушается циркуляция охлаждающей жидкости, отчего радиатор печки оказывается холодным, а силовой агрегат – перегретым.

Отказала помпа

Если помпа приказала «долго жить», то двигатель греется, а радиатор двигателя и печка холодные даже при езде на оборотах. Подозревая неладное в показаниях приборного щитка, скорее глушите мотор и щупайте теплообменник за бампером.


Стечение обстоятельств не исключено. При наличии воздушной пробки в малом круге и отказе термопереключателя «малый/большой контур» симптомы будут похожими. Конечно, идея проверить термостат прямо на машине хороша, но отказавшая помпа вряд ли позволит это сделать. К тому же, исходя из соображений безопасности, предположение о выходе из строя центробежного насоса системы охлаждения исключаем первым.

Проверка работоспособности помпы выполняется на остывшем моторе:

  • Заполнить расширительный бачок «до отказа» антифризом.
  • Снять хомуты с патрубков, идущих на радиаторы печки.
  • Запустить двигатель.
  • Сдернуть шланг со штуцера входа в теплообменник отопителя и оценить напор струи. Хорошая сила течения говорит об исправности центробежного насоса.
  • Заглушить мотор.
  • Восполнить запасы тосола.

Помпа перестает работать не только от обрыва ремня ГРМ или повреждения приводной клиноременной передачи. Крыльчатка может поломаться из-за несоблюдения технологии изготовления. К примеру, отрывается одна из лопастей и блокирует вращение других или неотполированная шершавая поверхность лопаток вызывает эрозию и разрушение соседних.

Пробита прокладка ГБЦ

При поврежденном уплотнительном элементе головки блока цилиндров автомобильная печка дует холодным воздухом только на небольших оборотах. Дайте двигателю свыше 4 000 об/мин и оцените работу отопителя. Если изрядно потеплело, то вероятно прокладку придется менять. Добавят уверенности в диагнозе другие симптомы:

  • Из выхлопной трубы идет густой белый дым.
  • На холодную в циркуляционном расширительном бачке бурлит.
  • ОЖ пахнет выхлопом.
  • На электродах свечей белесый налет.

И/Или:

  • Увеличен уровень масла + капельки тосола на щупе.
  • Кисель из масляной эмульсии и охлаждающей жидкости в «расширителе».

Прокладка ГБЦ может быть повреждена так, что выхлопные газы идут в систему охлаждения и образуются воздушные пробки. Выгонять их бесполезно, необходимо менять уплотнительный элемент.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector