Основные сферы планеты земля: литосфера, гидросфера, биосфера и атмосфера

Содержание:

Зачем нужно изучать процессы в атмосфере

Можно ли было предотвратить потопление эскадры из шестидесяти британских и французских военных кораблей в Черном море? Это случилось четырнадцатого ноября 1854 года во время Крымской Войны. После изучения предоставленных метеорологических сводок Урбен Леверье (Парижская обсерватория) пришел к выводу, что можно было предвидеть ураган (значит, не давать приказа выходить в открытое море), спрогнозировать это явление.

Этот исторический пример доказывает неизбежность развития науки, позволяющей наблюдать за атмосферой и прогнозировать ее поведение.

От того, как изучают атмосферу сегодня метеорологи, зависит определение оптимальных погодных сроков работы на полях, авиация без срочных прогнозов поведения воздушных масс становится не безопасной. Подтопления, град, ураганы, засухи — это неполный список природных явлений, происходящих в атмосфере.

Регулярные морские стихии (тайфуны, штормы, морские ураганы)

Ежегодные атлантические стихии

Для формирования штормов и ураганов нужны теплая вода и влажный воздух.
Из-за глобального потепления океан нагревается все больше, испарения также растут.

Штормы в Атлантике обычно образуются в теплых частях океана вблизи Африки.
Затем они «мчатся» через океан в сторону Америки.
Здесь их подпитывает значительно потеплевшая в последние десятилетия вода Карибского региона,
после чего штормы и ураганы обрушиваются на американское побережье.

Земле начали угрожать зомби-ураганы.
Климатологи предупреждают, что с дальнейшим изменением климата на планете вырастет количество зомби-штормов и зомби-ураганов.
Так называют явления, когда уже утихнувший шторм или ураган внезапно «оживает» и снова начинает усиливаться.

Ежегодные тихоокеанские стихии

Ла-Нинья («Малышка») регулярно возникает в южной части Тихого океана, когда стабильный восточный ветер
гонит теплую воду от берегов Перу и Чили в сторону Индонезии и Австралии.
В результате на поверхность поднимается холодная вода из морских глубин, и в регионе наступает похолодание.
Ла-Нинья влияет на погоду во всем мире.

Обратное явление, когда температура воды и воздуха у побережья Южной Америки повышается, зовется Эль-Ниньо («Малыш»).
Явление нередко совпадает по времени с Рождеством, а «Эль-Ниньо» в испаноговорящих странах называют младенца Христа, отсюда и возник термин.

Чередование Эль-Ниньо и Ла-Ниньи называется Южной осцилляцией.

Феномен впервые подробно описал британский ученый Гилберт Уокер в 1923 году, однако местные рыбаки обратили на него внимание гораздо раньше. Ла-Нинья не имела для них практического значения, но потепление воды при Эль-Ниньо плохо влияло на уловы.. Ла-Нинья охладила Тихий океан

Как это повлияет на погоду в мире?.

Ла-Нинья охладила Тихий океан. Как это повлияет на погоду в мире?.

Ураган «Катрина»

Жертвами урагана «Катрина» в 2005 году в 5 американских штатах стали свыше 1 тыс. 300 человек.
Больше других пострадала Луизиана. На ее долю приходится более 1 тыс. 100 погибших.
Кроме того, «Катрина» унесла жизни 221 человека в штате Миссисипи, 14 — во Флориде, 2 — в Джорджии и 2 — в Алабаме.

Стратосфера

Стратосфера является вторым по величине слоём атмосферы, а также вторым, ближайшим к Земной поверхности. По оценкам, он содержит около 15% от общей массы атмосферы Земли.

Толщина стратосферы составляет 35 км от тропопаузы, что означает, что она расположена между тропосферой и мезосферой. Термин «стратосфера» происходит от греческого strato (значит «слой») для обозначения того факта, что сама стратосфера подразделяется на другие более тонкие слои.

Слои стратосферы образуются из-за отсутствия климатических явлений, которые смешивают воздух. Таким образом, существует чёткое разделение между холодным и тяжёлым воздухом внизу и тёплым, лёгким воздухом сверху. Таким образом, с точки зрения температуры стратосфера работает точно противоположно тропосфере.

Поскольку эта зона более высокой вертикальной стабильности (без перемещений воздуха), пилоты самолётов, как правило, остаются в начале стратосферы, чтобы избежать турбулентности. Именно на этой высоте самолёты и воздушные шары достигают максимальной эффективности.

Некоторые самолёты, особенно реактивные, влетают в стратосферу, чтобы избежать воздухообмен.

Стратосфера также содержит хорошо известный озоновый слой, который поглощает большую часть ультрафиолетового излучения солнца. Без озонового слоя жизнь на Земле, какой мы её знаем, была бы невозможна.

Подобно тропосфере, стратосфера также имеет область, которая ограничивает её конец и показывает начало мезосферы, которая называется стратопауза.

Состав стратосферы

Большинство элементов, найденных на поверхности Земли и в тропосфере, не достигают стратосферы. Вместо этого они обычно:

  • разлагаются в тропосфере;
  • могут быть устранены солнечным светом;
  • могут переноситься на поверхность Земли через дождь или другие осадки.

Из-за инверсии в динамике температуры между тропосферой и стратосферой воздух практически не обменивается между двумя слоями, в результате чего испарения воды существуют в стратосфере только в незначительных количествах. По этой причине в этом слое чрезвычайно редко образование облаков.

Что касается газов, стратосфера образована преимущественно озоном, присутствующим в озоновом слое. Считается, что 90% всего озона в атмосфере находится в этой области. Кроме того, стратосфера содержит элементы, переносимые извержениями вулканов, такие, как оксиды азота, азотная кислота, галогены и т. д.

Температура стратосферы

Температура в стратосфере увеличивается с увеличением высоты, варьируя от -51 ° C в самой низкой точке (тропопауза) до -3 ° C в самой высокой точке (стратопауза).

Непрозрачность

В солнечной радиации (или солнечный свет ) соответствует энергии , получаемой Земля Солнца . Земля также повторно излучает излучение обратно в космос, но на более длинных волнах, невидимых человеческому глазу. В зависимости от условий атмосфера может препятствовать проникновению или выходу излучения из атмосферы. Среди наиболее важных примеров этих эффектов — облака и парниковый эффект .

Распространение волн

Когда свет проходит через атмосферу, фотоны взаимодействуют с ней посредством рассеяния волн. Если свет не взаимодействует с атмосферой, это прямое излучение, и это соответствует прямому взгляду на солнце. Непрямое излучение относится свет , который рассеивается в атмосфере. Например, в пасмурный день, когда тени не видны, нет прямого излучения для их проецирования, свет был рассеянным. Другой пример, из-за явления, называемого рэлеевским рассеянием , более короткие волны (синий цвет) рассеиваются легче, чем более длинные волны (красный цвет). Вот почему небо выглядит голубым, потому что синий свет рассеивается. Это также причина того, что закаты красные. Поскольку солнце находится близко к горизонту, солнечные лучи проходят больше атмосферы, чем обычно, прежде чем достигают глаза; поэтому весь синий свет рассеивается, оставляя только красный на заходящем солнце.

Щелкните миниатюру для увеличения.

Оптическое поглощение


Процент атмосферного поглощения Земли (или непрозрачности) на различных длинах волн и электромагнитного излучения, включая видимый свет .

Оптическое поглощение является еще одним важным свойством атмосферы. Разные молекулы поглощают разные длины волн излучения. Например, O 2 и O 3 поглощают почти все длины волн ниже 300  нанометров . Вода (H 2 O) поглощает большинство длин волн выше 700  нм , но это зависит от количества водяного пара в атмосфере. Когда молекула поглощает фотон, она увеличивает свою энергию.

Когда спектры поглощения газов атмосферы объединяются, остаются «окна» низкой непрозрачности , позволяющие проходить определенным световым полосам. Диапазон оптического окна составляет примерно от 300  нм ( ультрафиолет -C) до длин волн, которые могут видеть люди, видимого света (обычно известного как свет ) примерно 400–700  нм и до инфракрасного излучения примерно 1100  нм . Есть также атмосферные окна и радиоприемники , которые передают определенную инфракрасную и радио волны на более длинных волнах. Например, радиоокно охватывает диапазон длин волн от одного сантиметра до одиннадцати метров. График выше представляет 1-T (выраженный в%) (где T — коэффициент пропускания ).

Программа

Эмиссия противоположна поглощению, когда объект излучает излучение. Объекты, как правило, излучают определенное количество волн в соответствии с кривыми излучения своего «  черного тела  », поэтому более горячие объекты, как правило, излучают больше излучения на более коротких волнах. Холодные объекты излучают меньше излучения на более длинных волнах. Например, Солнце имеет температуру примерно 6000  К ( 5730  ° C ), его пики излучения приближаются к 500  нм и видны человеческому глазу. Земля имеет температуру около 290  К ( 17  ° C ), поэтому пики ее излучения приближаются к 10 000  нм (10  мкм ), что слишком долго для восприятия человеческим глазом.

Из-за своей температуры атмосфера излучает инфракрасное излучение. Например, ночью, когда небо чистое, поверхность Земли охлаждается быстрее, чем ночью, когда небо затянуто облаками. Это потому, что облака (H 2 O) являются важными поглотителями и излучателями инфракрасного излучения.

Парниковый эффект непосредственно связан с поглощением и испусканием. Некоторые химические вещества в атмосфере поглощают и излучают инфракрасное излучение, но не взаимодействуют с видимым светом. Типичными примерами этих компонентов являются CO 2.и H 2 O) . Если этих парниковых газов слишком много , солнечный свет нагревает поверхность Земли, но эти газы блокируют инфракрасное излучение, когда оно возвращается в космос. Этот дисбаланс вызывает нагрев Земли, что приводит к изменению климата .

Что еще присутствует в воздухе?

Следует отметить, что в воздушном пространстве можно обнаружить пар и пыль. Последняя состоит из пыльцы и частичек почвы, в городе к ним присоединяются примеси твердых выбросов из выхлопных газов.

А вот воды в атмосфере много. При определенных условиях она конденсируется, и появляются облака и туман. По сути это одно и то же, только первые появляются высоко над поверхностью Земли, а последний стелется по ней. Облака принимают разнообразную форму. Этот процесс зависит от высоты над Землей.

Если они образовались в 2 км над сушей, то их называют слоистыми. Именно из них проливается на землю дождь или падает снег. Над ними до высоты 8 км формируются кучевые облака. Они всегда самые красивые и живописные. Именно их рассматривают и гадают, на что они похожи. Если такие образования появятся на следующих 10 км, они будут очень легкими и воздушными. Их название перистые.

История образования атмосферы

Согласно наиболее распространённой теории, атмосфера Земли во времени пребывала в трёх различных составах. Первоначально она состояла из лёгких газов (водорода и гелия), захваченных из межпланетного пространства. Это так называемая первичная атмосфера (около четырех миллиардов лет назад). На следующем этапе активная вулканическая деятельность привела к насыщению атмосферы и другими газами, кроме водорода (углекислым газом, аммиаком , водяным паром). Так образовалась вторичная атмосфера (около трех миллиардов лет до наших дней). Эта атмосфера была восстановительной. Далее процесс образования атмосферы определялся следующими факторами:

  • утечка легких газов (водорода и гелия) в межпланетное пространство ;
  • химические реакции, происходящие в атмосфере под влиянием ультрафиолетового излучения, грозовых разрядов и некоторых других факторов.

Постепенно эти факторы привели к образованию третичной атмосферы, характеризующейся гораздо меньшим содержанием водорода и гораздо большим — азота и углекислого газа (образованы в результате химических реакций из аммиака и углеводородов).

Азот

Образование большого количества азота N 2 обусловлено окислением аммиачно-водородной атмосферы молекулярным кислородом О 2 , который стал поступать с поверхности планеты в результате фотосинтеза, начиная с 3 млрд лет назад. Также азот N 2 выделяется в атмосферу в результате денитрификации нитратов и других азотсодержащих соединений. Азот окисляется озоном до NO в верхних слоях атмосферы.

Азот N 2 вступает в реакции лишь в специфических условиях (например, при разряде молнии). Окисление молекулярного азота озоном при электрических разрядах в малых количествах используется в промышленном изготовлении азотных удобрений. Окислять его с малыми энергозатратами и переводить в биологически активную форму могут цианобактерии (сине-зелёные водоросли) и клубеньковые бактерии, формирующие ризобиальный симбиоз с бобовыми растениями, т. н. сидератами.

Кислород

Состав атмосферы начал радикально меняться с появлением на Земле живых организмов , в результате фотосинтеза , сопровождающегося выделением кислорода и поглощением углекислого газа. Первоначально кислород расходовался на окисление восстановленных соединений — аммиака, углеводородов, закисной формы железа , содержавшейся в океанах и др. По окончании данного этапа содержание кислорода в атмосфере стало расти. Постепенно образовалась современная атмосфера, обладающая окислительными свойствами. Поскольку это вызвало серьёзные и резкие изменения многих процессов, протекающих в атмосфере , литосфере и биосфере , это событие получило название Кислородная катастрофа .

Загрязнение атмосферы

В последнее время на эволюцию атмосферы стал оказывать влияние человек . Результатом его деятельности стал постоянный значительный рост содержания в атмосфере углекислого газа из-за сжигания углеводородного топлива, накопленного в предыдущие геологические эпохи. Громадные количества СО 2 потребляются при фотосинтезе и поглощаются мировым океаном. Этот газ поступает в атмосферу благодаря разложению карбонатных горных пород и органических веществ растительного и животного происхождения, а также вследствие вулканизма и производственной деятельности человека. За последние 100 лет содержание СО 2 в атмосфере возросло на 10 %, причём основная часть (360 млрд тонн) поступила в результате сжигания топлива. Если темпы роста сжигания топлива сохранятся, то в ближайшие 200-300 лет количество СО 2 в атмосфере удвоится и может привести к глобальным изменениям климата .

Сжигание топлива — основной источник и загрязняющих газов (СО , , SO 2). Диоксид серы окисляется кислородом воздуха до SO 3 в верхних слоях атмосферы, который в свою очередь взаимодействует с парами воды и аммиака, а образующиеся при этом серная кислота (Н 2 SO 4) и сульфат аммония ((NH 4) 2 SO 4) возвращаются на поверхность Земли в виде т. н. кислотных дождей. Использование двигателей внутреннего сгорания приводит к значительному загрязнению атмосферы оксидами азота, углеводородами и соединениями свинца (тетраэтилсвинец Pb(CH 3 CH 2) 4)).

Аэрозольное загрязнение атмосферы обусловлено как естественными причинами (извержение вулканов, пыльные бури, унос капель морской воды и пыльцы растений и др.), так и хозяйственной деятельностью человека (добыча руд и строительных материалов, сжигание топлива, изготовление цемента и т. п.). Интенсивный широкомасштабный вынос твёрдых частиц в атмосферу — одна из возможных причин изменений климата планеты.

Современная воздушная оболочка Земли

Строение земной атмосферы

Атмосфера Земли состоит из слоёв:
тропосфера (до 10 км от поверхности),
стратосфера (10-50 км),

мезосфера (50-85 км),
мезопауза (80-90 км),
термосфера (85-115 км и выше).

Озоносфера – область атмосферы Земли, расположенная на высоте от 10 до 50 км от поверхности земли
[границы тропосферы], с максимумом на высоте 20-25 км.
Предохраняет поверхность Земли от избыточного освещения ее УФ излучением Солнца.
Производство легко испаряющихся жидкостей типа фреонов и накопление их в атмосфере Земли
приводит к образованию «озоновых дыр», что может иметь негативные последствия для живых организмов.

Мезопа́уза — слой атмосферы, разделяющий мезосферу и термосферу. На Земле располагается на высоте 80—90 км над уровнем моря.
В мезопаузе находится температурный минимум, который составляет около −100 °C.
Ниже (начиная от высоты около 50 км) температура падает с высотой, выше (до высоты около 400 км) — снова растёт.
Мезопауза совпадает с нижней границей области активного поглощения рентгеновского
и наиболее коротковолнового ультрафиолетового излучения Солнца.
На этой высоте наблюдаются серебристые облака.

За термосферой (более 700 км от поверхности планеты) начинается экзосфера, или геокорона,
являющаяся, по-существу, ионизованным следом от орбитального движения Земли.

На высоте около 2000—3500 км экзосфера постепенно переходит в ближнекосмический вакуум,
заполненный сильно разряженными атомами водорода.

Последние слои атмосферы перед экзосферой называют ионосферой.
В общепланетарном значении это слой атмосферы планеты, сильно ионизированный вследствие облучения космическими лучами.
У Земного шара — это верхняя часть атмосферы, состоящая из мезосферы, мезопаузы и термосферы.

Наука, изучающая ионосферу с экхосферой называется аэрологией
.

Общие сведения об атмосфере Земли

Состав земной атмосферы

Атмосферный воздух представляет собой механическую смесь из различных газов, основные из которых:

  1. Азот N2 — 78,084% (по объёму)
  2. Кислород O2 — 20,946%
  3. Аргон Ar — 0,932%
  4. Водяной пар H2O — 0,5-4%
  5. Углекислый газ CO2 — 0,032%
  6. Неон Ne — 1,818×10-3%
  7. Гелий He — 4,6×10-4%
  8. Метан CH4 — 1,7×10-4%
  9. Криптон Kr — 1,14×10-4%
  10. Водород H2 — 5×10-5%
  11. Ксенон Xe — 8,7×10-6%
  12. Закись азота N2O — 5×10-5%

Ссылки:

СО2 уже никогда не упадет ниже 400 ppm.
Интересное видео о концентрации углекислого газа.

Дым от лесных пожаров скапливается в стратосфере

Два года назад экипаж немецкого ледокола Polarstern, вмороженного в ледяной лед Арктики, осветил ночное небо зеленым лазером. Отраженный свет луча должен был помочь исследователям изучать ледяные зимние облака. Но вместо этого луч обнаружил нечто неожиданное — на высоте более 7 километров находился слой неизвестных частиц толщиной в несколько километров. Позже исследователи пришли к выводу, что дымка образовалась от огромных лесных пожаров, охвативших тем летом Сибирь.

Ранее я рассказывал о том, что ученые заметили выпадение сажи в Арктике на морской лед, что впоследствии может привести к его нагреву и таянию. Соответственно, это вызовет изменение климата в регионе. Теперь речь пошла о еще одном последствии лесных пожаров, о котором международная группа ученых сообщает в своем исследовании, опубликованном в издании Atmospheric Chemistry and Physics.

Предположительно озоновый слой уничтожает дым от лесных пожаров

Как отмечают ученые, с конца 1970-х годов спутники могут отслеживать частицы дыма, которые хорошо видны из космоса, поскольку являются сильными поглотителями ультрафиолетового излучения. Однако до 2017 года ими не было зафиксировано признаков дыма, проникающего в стратосферу в сколько-нибудь заметном количестве. Событие, связанное с задымлением в Арктике, вызывает у экспертов особую тревогу. Ранее предполагалось, что что Арктика будет действительно чистой.

Термосфера. Особенности

Термосфера — это слой атмосферы Земли, находящийся прямо над мезосферой и ниже экзосферы. Он простирается от 90 км до 500-1000 км над нашей планетой.


Полярные сияния (северное сияние и южное сияние) в основном происходят в термосфере.

Температура резко поднимается в нижней термосфере (200–300 км над уровнем моря), затем выравнивается и держится достаточно стабильно с увеличением высоты. Солнечная активность сильно влияет на температуру в термосфере. Термосфера обычно примерно на 200 °C горячее днем, чем ночью, и примерно на 500 °C горячее при повышенной Солнечной активности. Температура в верхней термосфере может находиться в диапазоне от 500 °C до 2000 °C или выше.

Граница между термосферой и экзосферой над ней называется термопаузой. В нижней части термосферы находится мезопауза.

Хотя термосфера считается частью атмосферы Земли, плотность воздуха в этом слое настолько низкая, что большая часть термосферы — это то, что мы обычно считаем космическим пространством. На самом деле, наиболее распространенное определение гласит, что космическое пространство начинается на высоте 100 км, немного выше мезопаузы в нижней части термосферы. Международная космическая станция находится на орбите Земли в термосфере!


Международная космическая станция

Ниже термосферы газы, состоящие из атомов и молекул разных типов, перемешиваются турбулентностью в атмосфере. Воздух в нижних слоях атмосферы в основном состоит из знакомой смеси 80% молекул азота (N2 ) и 20% молекул кислорода (O2 ). В термосфере и выше газовые частицы сталкиваются так редко, что молекулы газов становятся одноатомными. В верхней термосфере атомарный кислород (O), атомарный азот (N) и гелий (He) являются основными компонентами воздуха.

Большая часть рентгеновского и ультрафиолетового излучения Солнца поглощается в термосфере. Когда Солнце становится очень активным и излучает больше энергии, термосфера нагревается и расширяется. Из-за этого высота верхней границы термосферы (термопауза) меняется. Термопауза находится на высоте от 500 до 1000 км, иногда и выше. Поскольку многие спутники вращаются внутри термосферы, изменение плотности очень разряженного воздуха на орбитальных высотах, вызванное нагревом и расширением термосферы, создает силу трения для вращения спутников. Инженеры должны учитывать это изменяющееся сопротивление полетам при расчете орбит, и спутники иногда нужно поднимать выше, чтобы компенсировать влияние силы сопротивления.

Высокоэнергетические солнечные фотоны также отрывают электроны от газовых частиц в термосфере, создавая электрически заряженные ионы атомов и молекул. Ионосфера Земли, состоящая из нескольких областей таких ионизированных частиц в атмосфере, находится в одном и том же пространстве с электрически нейтральной термосферой.

Как и в океанах, в атмосфере Земли есть волны и приливы. Эти волны и приливы переносят энергию в атмосфере, включая термосферу. Ветры и общая циркуляция в термосфере в значительной степени обусловлены этими приливами и волнами. Движущиеся ионы, увлекаемые столкновениями с электрически нейтральными газами, производят мощные электрические токи в некоторых частях термосферы.

Наконец, полярные сияния (южное и северное сияние) в основном встречаются в термосфере. Заряженные частицы (электроны, протоны и другие ионы) из космоса сталкиваются с атомами и молекулами в термосфере в высоких широтах, переводя их в более высокие энергетические состояния. Эти атомы и молекулы теряют эту избыточную энергию, испуская фотоны света, которые мы видим как красочные полярные сияния.


Северное сияние

Понятие и состав географической оболочки Земли

Географическая оболочка — самый большой на Земле природный комплекс, в котором литосфера, гидросфера, атмосфера и биосфера, сложно переплетаясь, взаимодействуют между собой, проникают друг в друга.

В пределах оболочки, как бы лежащей на границе планеты и космоса, действуют как космические, так и внутренние силы. Одно из важнейших свойств географической оболочки — наличие веществ (прежде всего воды) одновременно в жидком, твёрдом и газообразном состоянии. Но что же здесь особенно интересного?
Оказывается, интересного много.

Оболочка уникальна — таких нет не только у других планет Солнечной системы, но, может быть, и во всей нашей Галактике. Она устроена очень сложно; история её увлекательна.

Протекающие в ней многообразные процессы очень тесно связаны между собой и могут быть легко нарушены

Они ещё недостаточно изучены, и значение их крайне важно для сохранения Земли и выживания человечества

Географическая оболочка уникальна прежде всего тем, что в ней действуют, переплетаясь между собой, взаимно дополняя друг друга или сталкиваясь как противоположные, разные формы энергии. Часть из них — земного происхождения, часть — космического. Обилие энергии порождает различные процессы — геологические, биологические, физические и химические.

Мы говорим о том, что на земной поверхности происходит противоборство внешних и внутренних сил. Причём одни из них стремятся установить равновесие. Например, сила тяжести, с которой связаны и выравнивание рельефа, и стекание воды в его понижения. С силами притяжения Луны и Солнца связаны приливы и отливы.

Вращение Земли приводит к отклонению русел рек, морских и воздушных течений. Среди внутренних источников энергии на первом месте стоит распад радиоактивных веществ, с которым связаны образование гор и движение литосферных плит, землетрясения и извержения вулканов, деятельность гейзеров, горячих источников.

Все эти процессы сопровождаются обезвоживанием и дегазацией недр, т.е. выносом воды и газов на земную поверхность. Немалую роль играет и то, что Земля, как большой магнит, образует магнитное поле, которое влияет не только на процессы притяжения, но и на поведение электрических разрядов в атмосфере.
Космическая энергия достигает поверхности Земли в виде различных излучений, из которых главенствует солнечное.

Его поступает очень много, и хорошо ещё, что значительная часть отражается и уходит обратно в космос. Тепловая часть солнечной энергии определяет прежде всего неодинаковый нагрев различных участков поверхности земного шара, с чем связаны воздушные и морские течения, прибрежные и горно-долинные ветры. Нагреваясь днём и остывая ночью, растрескиваются и разрушаются верхние слои горных пород.

Но главное — с солнечной энергией связаны два важнейших процесса, которые, собственно, и создают на Земле уникальную оболочку. Это — круговорот воды и развитие жизни.

Плотность и масса

Температура и плотность относительно высоты согласно стандартизированной модели атмосферы NRLMSISE-00 .

Плотность воздуха на уровне моря составляет примерно 1,2  кг / м 3 ( 1,2  г / л ). Естественные колебания атмосферного давления происходят с каждой высотой и изменением погоды. Эти изменения относительно невелики на высотах населенных пунктов, но они становятся более выраженными в верхних слоях атмосферы, а затем в космосе из-за изменений солнечной радиации.

Плотность атмосферы уменьшается с высотой. Это изменение можно смоделировать с помощью формулы барометрического нивелирования . Более сложные модели используются метеорологами и космическими агентствами для прогнозирования погоды и постепенного снижения орбиты спутника.

По данным Национального центра атмосферных исследований , «общая масса атмосферы составляет 5,148 0 × 10 18  кг с годовым колебанием из-за водяного пара от 1,2 до 1,5 × 10 15  кг в зависимости от использования давления на поверхности и водяного пара. данные. Средняя масса водяного пара оценивается в 1,27 × 10 16  кг, а масса сухого воздуха составляет (5,135 2 ± 0,000 3) × 10 18  кг  ». Облака (иногда твердые жидкости) не учитываются в средней массе водяного пара.

Солнечная радиация

Большая часть солнечной радиации рассеивается в космосе.

Бывает двух видов:

  1. Рассеянная — солнечные лучи рассеиваются в атмосфере и на землю поступает в виде свечение от небесного свода.

  2. Прямая — которая доходит до поверхности земли в виде прямых солнечных лучей.

От чего зависит:

  1. Продолжительности освещения поверхности (длины светового дня)

  2. От угла падения солнечных лучей (в высоких широтах количество солнечной радиации меньше чем на экваторе)

Что может еще повлиять на количество солнечной радиации:

  1. Облачность (чем меньше облачность — тем больше солнечная радиация)

  2. Прозрачность атмосферы

Почему на полюсах, в дни солнцестояние холодно, несмотря на максимальную продолжительность дня и высокую прозрачность атмосферы?

При не заходящем солнце суммарная солнечная радиация на полюсах больше, чем на экваторе. Однако, белая поверхность снега и льда отражает 90% солнечных лучей. Поэтому сохраняется только незначительное количество тепла и поверхность не нагревается.

Составные части

Кислород – существенная и важная составная часть атмосферы Земли.

Кислород образует 20,9% нижней части газовой оболочки. Приблизительно три четверти состоит из азота (78,08%). Остальная часть приходится на аргон (0,93%) и углекислый газ (0,33%). Других газов в атмосфере мало.

Все указанные составные части (кислород, азот, аргон, углекислый газ) образуют 98,8 % газовой оболочки. Эту смесь мы называем воздухом.

Было установлено, что атмосфера в таком составе достигает высоты 88 км. Водорода в самом нижнем слое  действительно очень мало, поскольку он так легок, что без труда уходит в межпланетное пространство.

Газовая оболочка делится на:

  1. Тропосфера —  до 10 – 12 км.
  2. Стратосфера —  до 55 км от тропосферы.
  3. Мезосфера — до 85 – 90 км от стратосферы.
  4. Термосфера — до 150 км от мезосферы.
  5. Экзосфера — до 800 – 2 000 км от термосферы.

Нижний слой атмосферы – тропосфера

Первый слой – тропосфера, в котором одна из особенностей – понижение температуры, которое происходит каждые сто метров со скоростью 0, 65 и в самой верхней части равна -53. Происходит расслоение воздуха горизонтально. Воздушные массы отличаются по месту формирования. На границе воздушных масс появляются антициклоны и циклоны – это атмосферный фронт. Они определяют погоду в конкретный промежуток. Тропосфера больше всего изучена. Высота этого слоя от 8 до 12 км.В основном здесь сосредоточены водяные пары. В Тропосфере образовывается большое количество облаков. Водяные пары есть и в стратосфере и тропопаузе, однако, там их намного меньше, поэтому и отсутствует облакообразование.

Этот слой атмосферы является самым защищенным от лучей Солнца, населенным и подвижным.

80% от массы атмосферы занимает тропосфера.

Не так давно в этом слое атмосферы обнаружили, что температура падает при повышении высоты и решили, что это свойство можно приписать всем слоям атмосферы. Объяснили ученые этот факт так: чем дальше от поверхности Земли, нагретой солнцем, тем холоднее. Но зонды, которые поднимали в атмосферу, показали, что до десяти километров температура понижается, затем остается постоянной, затем постепенно воздушные массы нагреваются. Эти данные противоречили представлениям ученых об изменении в атмосфере температуры по вертикали. Решили проверить и запускали шары ночью, чтобы Солнце приборы не нагревало.

Но сведения были одинаковы: температура с высотой падать прекращает. Ученые признали факт, что выше установленной высоты свои законы, не похожие на законы нижней части атмосферы.

Там где температура становится ниже, называют тропосферой, а тот, в котором не понижается – стратосферой.

Литература об атмосфере и аэрологии

Также смотрите литературу по геомагнетизму.

  • Бримблкумб П. Состав и химия атмосферы. М.: Мир, 1988. 351 с.
  • Мальцев Ю.П. (ред.), Магнитосферно-ионосферная физика, краткий справочник. — СПБ.: «Наука», 1993. — 184 с.
  • Charlson R.J., Lovelock J.E., Andreae M.O., Warren S.G.
    Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate //
    Nature. 1987. Vol. 326, N 614. P. 655-661.
  • Lamb A.H. Volcanic dust in the atmosphere // Phil. Trans. Roy. Soc. 1970. Vol. 266. P. 425-533.
  • Lamb A.H. Update of the chronology of assessments of the volcanic dust veil index //
    Clim. Monit. 1983. N 12. P. 79-90.
  • Sato M., Hansen J.E., McCormick M.P., Pollack J.B. Stratospheric aerosol optical depths, 1850–1990 //
    J. Geophys. Res. 1993. Vol. 98. P. 22 987-22 994.
  • Stothers R.B., Wolff J.A., Self S., Rampino M.R.
    Basaltic fissure eruptions, plume heights and atmospheric aerosols //
    Geophys. Res. Let. 1986. N 13. P. 725-728.

Главная

Науки о земле :

Атмосфера |
Геосфера |
Гидросфера |

История Земли |
Климатология |
Бедствия и ЧП |
Дисциплины |
Геопорталы |
Геологи |
Геособытия |
Геоцентры |
Геокнига |
Геотермины |
Авторские исследования

Близкие по теме страницы:
География |
Карты |

Экзопланеты |

Музеи и библиотеки

На правах рекламы (см.
условия):

Для пекарен: упаковочное оборудование Звоните!
   

Алфавитный перечень страниц:
А |
Б |
В |
Г |
Д |
Е (Ё) |
Ж |
З |
И |
Й |
К |
Л |
М |
Н |
О |
П |
Р |
С |
Т |
У |
Ф |
Х |
Ц |
Ч |
Ш |
Щ |
Э |
Ю |
Я |
0-9 |
A-Z (англ.)


Ключевые слова для поиска сведений о воздушной оболочке Земли:

На русском языке: физика свободной атмосферы, воздушная оболочка Земли, аэрология, концентрация воздушных газов,
химический состав воздуха, атмосферная циркуляция, ионосфера, тропосфера, стратосфера, метеорология, палеоатмосфера,
штормовой ветер, ураганы и штормы, морские стихии, тайфуны, циклоны и антициклоны, синоптические факторы, синоптика;

На английском языке: Earth atmosphere, meteorology, aerology, air, weather.

«Сайт Игоря Гаршина», 2002, 2005.
Автор и владелец — Игорь Константинович Гаршин
(см. резюме).

Пишите письма
().

Страница обновлена 11.11.2021

Свойства атмосферы

Это газообразный защитный купол, который оберегает все живое от угроз из космоса. Ультрафиолетовое солнечное излучение губительно для всего живого, но нас от него защищает слой озона. В газовой оболочке сгорает большая масса прилетающих метеоров. Это прослойка, благодаря которой у земной коры сохраняется комфортная температура. Лучи Солнца отражаются от облаков, создается парниковый эффект. Если бы его не было, климат был бы холоднее как минимум на 20 градусов. Благодаря атмосферному круговороту воды мы располагаем не только благоприятными климатическими условиями, но и богатым набором минеральных веществ. Во всей системе такого нигде нет.

Вся газовая оболочка простирается на тысячи километров. Но атмосферой считаются только те газы, которые вращаются с планетой вокруг ее оси с такой же скоростью. Ее высота доходит примерно до 1000 км. Она плавно сливается с космосом, пограничной территорией является экзосфера.

Примечания

  1. Будыко М. И., Кондратьев К. Я. Атмосфера Земли // Большая советская энциклопедия. 3-е изд. / Гл. ред. А. М. Прохоров. — М.: Советская Энциклопедия, 1970. — Т. 2. Ангола — Барзас. — С. 380—384.
  2. Thompson A.  (англ.). space.com (9 April 2009). Дата обращения 19 июня 2017.
  3. . Earth System Research Laboratory. Global Greenhouse Gas Reference Network. Дата обращения 6 февраля 2017.
  4. при 0,03 % по объему
  5. Хромов С. П. Влажность воздуха // Большая советская энциклопедия. 3-е изд. / Гл. ред. А. М. Прохоров. — М.: Советская Энциклопедия, 1971. — Т. 5. Вешин — Газли. — С. 149.
  6. Dr. Tony Phillips.  (англ.). SpaceDaily (16 July 2010). Дата обращения 19 июня 2017.

Изучение и описание

При изучении и описании земной коры, мантии и ядра ученые анализировали их состав, строение и структуру. Точно так же они описали и атмосферу Земли. Но если использовать геологические критерии, то возникнут трудности.

Геологические процессы в земной коре и мантии, хотя и имеют динамичный характер, а сама кора изменяется, но все это происходит в течение длительных периодов времени.

Атмосфера Земли меняется каждый день и гораздо резче. Она образует связующее звено между космическим пространством и планетой. Поэтому большинство космических влияний (например, солнечное излучение, солнечный ветер, поток заряженных частиц из космоса) проявляются и в газовой оболочке планеты.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector