Движение земной коры
Содержание:
- Горные породы по группам
- Методы исследования структуры Земли
- Форма и размеры планеты Земля
- Геохимический метод изучения строения планет
- Шкала землетрясений
- Движения разрывного типа
- «Литосфера. Земная кора»
- Как образовалась столь сложная структура Земли
- Континентальная кора
- Изучение строения земной коры с помощью сейсмоволн
- Земная кора и ее типы
- Предположения о ядре
- Вулканизм
- Строение океанической земной коры
- Как изучают строение Земли и других планет?
Горные породы по группам
1. Магматические. Название говорит само за себя. Они возникают из остывшей магмы, вытекающей из жерла древних вулканов. Строение этих пород напрямую зависит от скорости застывания лавы. Чем она больше, тем меньше кристаллы вещества. Гранит, например, сформировался в толще земной коры, а базальт появился в результате постепенного излияния магмы на ее поверхность. Многообразие таких пород довольно велико. Рассматривая строение земной коры, мы видим, что она состоит из магматических минералов на 60 %.
2. Осадочные. Это породы, которые стали результатом постепенного отложения на суше и дне океана обломков тех или иных минералов. Это могут быть как рыхлые компоненты (песок, галька), сцементированные (песчаник), остатки микроорганизмов (каменный уголь, известняк), продукты химических реакций (калийная соль). Они составляют до 75 % всей земной коры на материках.По физиологическому способу образования осадочные породы делятся на:
- Обломочные. Это остатки различных горных пород. Они разрушались под воздействием природных факторов (землетрясение, тайфун, цунами). К ним можно отнести песок, гальку, гравий, щебень, глину.
- Химические. Они постепенно образуются из водных растворов тех или иных минеральных веществ (соли).
- Органические или биогенные. Состоят из останков животных или растений. Это горючие сланцы, газ, нефть, уголь, известняк, фосфориты, мел.
3. Метаморфические породы. В них могут превращаться другие компоненты. Это происходит под воздействием изменяющейся температуры, большого давления, растворов или газов. Например, из известняка можно получить мрамор, из гранита — гнейс, из песка — кварцит.
Минералы и горные породы, которые человечество активно использует в своей жизнедеятельности, называются полезными ископаемыми. Что они собой представляют?
Это природные минеральные образования, которые влияют на строение земли и земной коры. Они могут использоваться в сельском хозяйстве и промышленности как в естественном виде, так и подвергаясь переработке.
Методы исследования структуры Земли
Представления о строении Земли, изучение процесса строятся на основании данных топографии, батиметрии и гравиметрии.
Научная дисциплина может рассматриваться как самостоятельный раздел картографии и геодезии.
Название дисциплины соединяет греческие термины «глубина» и «мера».
Данные батиметрии используют для навигации и научных изысканий.
Данные представляются схемами и таблицами.
Также представления о строении Земли формируются на основе наблюдения горных пород в обнажениях, образцах, которые подняли с больших глубин; анализа сейсмических волн и экспериментах с кристаллическими телами при температурах и давлениях, близких к недрам планеты.
Ядро исследуют с помощью анализа радиоактивных изотопов, которые содержаться в вулканических породах глубоко внутри Земли.
Вещества, которые входят в состав мантии, еще до конца не изучены, сведений мало. Ответы на вопросы находят путем выдвижения гипотез и лабораторных экспериментов.
Мантия находится глубоко под Землей. Самые глубокие буровые скважины не доходят до нее. При прорыве газов через земную кору образуются кимберлитовые трубки. Через них поступают мантийные породы и минералы.
Один из известных — алмаз.
Мантию можно исследовать с помощью нейтрино.
Эти частицы — разновидность антивещества, антинейтрино — выделяются в результате радиоактивного распада урана, тория и других радиоактивных изотопов глубоко под землей.
Анализ земной коры проводят с использованием кремния и алюминия. Их находят в континентальных областях. В сочетании с кислородом они дают гранит. Под океанским дном — базальтовые породы. В них преобладает кремний, магний и железо.
Но чистых образцов пород из мантии добыть не удалось.
Те породы, которые оказываются на поверхности — загрязнены.
При извержении вулканов выбрасываются сгустки мантии. В них содержится оливин и пироксен. В них много магния и железа.
Ученые пытаются узнать истину: строят предположения о составе мантии, используют косвенные доказательства. Они разработали детекторы для обнаружения антинейтрино. Человек становится ближе к пониманию основ.
Форма и размеры планеты Земля
Форма и геометрические размеры Земли основные понятия, которыми она описывается, как небесное тело. В средние века считалось, что планета имеет плоскую форму, находится в центре Вселенной, а вокруг нее вращается Солнце и другие планеты.
Но такие смелые естествоиспытатели, как Джордано Бруно, Николай Коперник, Исаак Ньютон опровергли подобные суждения и математически доказали, что Земля имеет форму шара с приплюснутыми полюсами и вращается вокруг Солнца, а не наоборот.
Структура планеты очень многообразная, при том, что ее размеры достаточно невелики по меркам даже солнечной системы – длина экваториального радиуса составляет 6378 километров, полярного радиуса – 6356 км.
Длина одного из меридианов равняется 40008 км, а экватор простирается на 40007 км. Из этого также видно, что планета несколько «приплющена» между полюсами, ее вес составляет 5.9742 × 1024 кг.
Геохимический метод изучения строения планет
Имеется еще один путь изучения глубинного строения планет — геохимический способ. Выделение различных оболочек Земли и других планет земной группы по физическим параметрам находит достаточно четкое геохимическое подтверждение, основанное на теории гетерогенной аккреции, согласно которой состав ядер планет и их внешних оболочек в основной своей части является исходно различным и зависит от самого раннего этапа их развития.
В результате этого процесса в ядре концентрировались наиболее тяжелые (железо-никелевые) компоненты, а во внешних оболочках — более легкие силикатные (хондритовые), обогащенные в верхней мантии летучими веществами и водой.
Важнейшей особенностью планет земной группы (Меркурий, Венера, Земля, Марс) является то, что их внешняя оболочка, так называемая кора, состоит из двух типов вещества: «материкового» — полевошпатового и «океанического» — базальтового.
Материковая (континентальная) кора Земли
Материковая (континентальная) кора Земли сложена гранитами или породами, близкими им по составу, т. е. породами с большим количеством полевых шпатов. Образование «гранитного» слоя Земли обусловлено преобразованием более древних осадков в процессе гранитизации.
Гранитный слой надо рассматривать как специфическую оболочку коры Земли — единственной планеты, на которой получили широкое развитие процессы дифференциации вещества с участием воды и имеющей гидросферу, кислородную атмосферу и биосферу. На Луне и, вероятно, на планетах земной группы континентальная кора слагается габбро-анортозитами — породами, состоящими из большого количества полевого шпата, правда, несколько другого состава, чем в гранитах.
Этими породами сложены древнейшие (4,0—4,5 млрд. лет) поверхности планет.
Океаническая (базальтовая) кора Земли
Океаническая (базальтовая) кора Земли образована в результате растяжения и связана с зонами глубинных разломов, обусловивших проникновение к базальтовым очагам верхней мантии. Базальтовый вулканизм накладывается на ранее сформировавшуюся континентальную кору и является относительно более молодым геологическим образованием.
Проявления базальтового вулканизма на всех планетах земного типа, по-видимому, аналогичны. Широкое развитие базальтовых «морей» на Луне, Марсе, Меркурии, очевидно, связано с растяжением и образованием вследствие этого процесса зон проницаемости, по которым базальтовые расплавы мантии устремлялись к поверхности. Этот механизм проявления базальтового вулканизма является более или менее сходным для всех планет земной группы.
Спутница Земли — Луна также имеет оболочечное строение, в целом повторяющее земное, хотя и имеющее разительно отличие по составу.
Тепловой поток Земли. Горячее всего в районе разломов земной коры, а холоднее – в районах древних материковых плит
Шкала землетрясений
При сообщениях о землетрясениях, мы слышим упоминание о баллах по шкале Рихтера. Единица ее измерения – это магнитуда: физическая величина, обозначающая энергию землетрясения. С каждым баллом сила энергии возрастает почти в тридцать раз.
Но чаще всего применяется шкала относительного типа. Оба варианта оценивают разрушающее действие толчков на постройки и людей. По этим критериям колебания земной коры от одного до четырех баллов практически не замечаются людьми, правда, могут раскачиваться люстры на верхних этажах здания. При показателях от пяти до шести баллов на стенах зданий возникают трещины, лопаются стекла. При девяти баллах рушится фундамент, падают линии электропередач, а землетрясение в двенадцать баллов способно стереть целые города с лица Земли.
Движения разрывного типа
Если горные породы не обладают достаточной прочностью, чтобы выдержать воздействие внутренних сил, начинается их движение. В таких случаях образуются трещины, разломы с вертикальным типом смещения грунта. Опущенные участки (грабены) чередуются с горстами — поднявшимися горными образованиями. Примером таких разрывных движений являются Алтайские горы, Аппалачи и т.д.
Глыбовые и складчатые горы имеют различия во внутреннем строении. Для них характерны широкие отвесные склоны, долины. В некоторых случаях опущенные места заполняются водой, образуя озера. Одним из самых знаменитых озер России является Байкал. Оно образовалось в результате разрывного движения земли.
«Литосфера. Земная кора»
Литосфера. Земная кора. 4,5 млрд. лет назад, Земля представляла собой шар, состоящий из одних газов. Постепенно тяжелые металлы, такие как железо и никель, опускались к центру и уплотнялись. Легкие породы и минералы всплывали на поверхность, охлаждались и отвердевали.
Внутреннее строение Земли.
Принято делить тело Земли на три основные части – литосферу (земную кору), мантию и ядро.
Ядро — центр Земли, средний радиус которого около 3500 км (16,2 % объема Земли). Как предполагают, состоит из железа с примесью кремния и никеля. Наружная часть ядра находится в расплавленном состоянии (5000 °С), внутренняя, по-видимому, твердая (субъядро). Перемещение вещества в ядре создает на Земле магнитное поле, защищающее планету от космического излучения.
Ядро сменяется мантией, которая простирается почти на 3000 км (83 % объема Земли). Считают, что она твердая, в то же время пластичная и раскаленная. Мантия состоит из трех слоев: слоя Голицына, слоя Гуттенберга и субстрата. Верхняя часть мантии, называемая магмой, содержит слой с пониженной вязкостью, плотностью и твердостью — астеносферу, на которой уравновешиваются участки земной поверхности. Граница между мантией и ядром называется слоем Гуттенберга.
Литосфера
Литосфера – верхняя оболочка «твердой» Земли, включающая земную кору и верхнюю часть подстилающей ее верхней мантии Земли.
Земная кора – верхняя оболочка «твердой» Земли. Мощность земной коры от 5 км (под океанами) до 75 км (под материками). Земная кора неоднородна. В ней различают 3 слоя – осадочный, гранитный, базальтовый. Гранитный и базальтовый слои названы так потому, что в них распространены горные породы, похожие по физическим свойствам на гранит и базальт.
Состав земной коры: кислород (49 %), кремний (26 %), алюминий (7 %), железо (5 %), кальций (4 %); самые распространенные минералы — полевой шпат и кварц. Граница между земной корой и мантией называется поверхностью Мохо.
Различают континентальную и океаническую земную кору. Океаническая отличается от континентальной (материковой) отсутствием гранитного слоя и значительно меньшей мощностью (от 5 до 10 км). Толщина континентальной коры на равнинах 35—45 км, в горах 70—80 км. На границе материков и океанов, в районах островов толщина земной коры составляет 15—30 км, гранитный слой выклинивается.
Положение слоев в континентальной коре свидетельствует о разном времени ее образования. Базальтовый слой является самым древним, моложе его – гранитный, а самый молодой – верхний, осадочный, развивающийся и в настоящее время. Каждый слой коры формировался в течение длительного отрезка геологического времени.
Литосферные плиты
Земная кора находится в постоянном движении. Первым гипотезу о дрейфе материков (т.е. горизонтальном движении земной коры) выдвинул в начале ХХ века А. Вегенер. На ее основе создана теория литосферных плит. Согласно этой теории, литосфера не является монолитом, а состоит из семи крупных и нескольких более мелких плит, «плавающих» на астеносфере. Пограничные области между литосферными плитами называют сейсмическими поясами — это самые «беспокойные» области планеты.
Земная кора разделяется на устойчивые и подвижные участки.
Устойчивые участки земной коры — платформы — образуются на месте геосинклиналей, потерявших подвижность. Платформа состоит из кристаллического фундамента и осадочного чехла. В зависимости от возраста фундамента выделяют древние (докембрийские) и молодые (палеозойские, мезозойские) платформы. В основании всех материков лежат древние платформы.
Подвижные, сильно расчлененные участки земной поверхности называются геосинклиналями (складчатыми областями). В их развитии выделяют два этапа: на первом этапе земная кора испытывает опускания, происходит накопление осадочных горных пород и их метаморфизация. Затем начинается поднятие земной коры, горные породы сминаются в складки. На Земле было несколько эпох интенсивных горообразований: байкальская, каледонская, герцинская, мезозойская, кайнозойская. В соответствии с этим выделяют различные области складчатости.
Распространение и возраст платформ и геосинклиналей показывается на тектонической карте (карте строения земной коры).
Конспект урока «Литосфера. Земная кора». Следующая тема «Горные породы».
Как образовалась столь сложная структура Земли
Происхождение планеты.
Обширное облако газа и пыли начало сжиматься в крупный шар. Силы гравитации притягивали большое количества вещества. Температура и давление в центе нарастали. Большое количество энергии породило термоядерный взрыв. Загорелась звезда.
Эта звезда вращалась и притягивала на свою орбиту небольшие соседние тела. Они слипались в комки.
Земля образовалась из обломков звезд ранних поколений. Молекулы газа и частицы пыли объединялись. Образовывались глыбы и камни. Они состояли из частиц льда, железа и других веществ, которые были выброшены в космос. Силы притяжения сталкивали частицы и склеивали между собой.
Мелкие частицы соединялись в более крупные — планетезимали. Они сталкивались, разрушались и соединялись. Гравитация объектов росла, все больше вещества образовывалось. Появлялись раскаленные тела — прототипы планет.
Так постепенно возникло ядро планеты Земля.
Земля подвергалась бомбардировкам, сталкивалась с планетами, группами метеоритов. Один из таких ударов мог образовать Луну.
Энергия столкновения могла расплавить верхние слои земной коры и изменить геологию планеты. Земля могла расплавиться до самого ядра. Формирование твердой поверхности началось заново.
Неизвестно, в какой временной промежуток Земля обзавелась корой. Сегодняшняя кора по возрасту достигает 3,8 миллиарда лет. Большинство утесов изменилось под влиянием температур и давления.
Сейчас Земля покрыта несколькими большими жесткими плитами, которые постоянно движутся и трутся друг о друга. Это тектоника плит или платформ. Земные породы постоянно перемешиваются и преобразуются. Без таких процессов у планеты не было бы стабильного климата, запасов нефти и минералов.
Континентальная кора
Литосфера взаимодействует с атмосферой, гидросферой и биосферой. В процессе синтеза они образуют самую сложную и реакционно активную оболочку Земли. Именно в тектоносфере происходят процессы, изменяющие состав и строение этих оболочек.Литосфера на земной поверхности не однородна. Она имеет несколько слоев.
- Осадочный. Он в основном образуется горными породами. Здесь преобладают глины и сланцы, а также широко распространены карбонатные, вулканогенные и песчаные породы. В осадочных слоях можно встретить такие полезные ископаемые, как газ, нефть и каменный уголь. Все они имеют органическое происхождение.
- Гранитный слой. Он состоит из магматических и метаморфических пород, которые наиболее близки по своей природе к граниту. Этот слой встречается далеко не везде, наиболее ярко он выражен на континентах. Здесь его глубина может составлять десятки километров.
- Базальтовый слой образуют породы, близкие к одноименному минералу. Он более плотный, чем гранит.
Изучение строения земной коры с помощью сейсмоволн
Сейсмические колебания могут быть вызваны источниками двух видов: естественными и искусственными. Естественными источниками колебаний являются землетрясения, волны которых несут необходимую информацию о плотности пород, сквозь которые они проникают.
Арсенал искусственных источников колебаний более обширен, но в первую очередь искусственные колебания вызываются обыкновенным взрывом, однако есть и более “тонкие” способы работы – генераторы направленных импульсов, сейсмовибраторов и т.п.
Проведением взрывных работ и изучением скоростей сейсмических волн занимается сейсморазведка — одна из важнейших отраслей современной геофизики.
Что же дало изучение сейсмических волн внутри Земли? Анализ их распространения выявил несколько скачков изменения скорости при прохождении через недра планеты.
Земная кора
Первый скачок, при котором скорости возрастают с 6,7 до 8,1 км/с, как считают геологи, регистрирует подошву земной коры. Эта поверхность располагается в разных местах планеты на различных уровнях, от 5 до 75 км. Граница земной коры и нижележащей оболочки — мантии, получила название «поверхности Мохоровичича», по имени впервые установившего ее югославского ученого А. Мохоровичича.
Мантия
Мантия залегает на глубинах до 2 900 км и делится на две части: верхнюю и нижнюю. Граница между верхней и нижней мантией также фиксируется по скачку скорости распространения продольных сейсмических волн (11,5 км/с) и располагается на глубинах от 400 до 900 км.
Верхняя мантия имеет сложное строение. В ее верхней части имеется слой расположенный на глубинах 100—200 км, где происходит затухание поперечных сейсмических волн на 0,2— 0,3 км/с, а скорости продольных волн, по существу, не меняются. Этот слой назван волноводом. Его толщина обычно равняется 200—300 км.
Часть верхней мантии и кора, залегающие над волноводом, называются литосферой, а сам слой пониженных скоростей — астеносферой.
Таким образом, литосфера представляет собой жесткую твердую оболочку, подстилаемую пластичной астеносферой. Предполагается, что в астеносфере возникают процессы, вызывающие движение литосферы.
Внутреннее строение нашей планеты
Ядро Земли
В подошве мантии происходит резкое уменьшение скорости распространения продольных волн с 13,9 до 7,6 км/с. На этом уровне лежит граница между мантией и ядром Земли, глубже которой поперечные сейсмические волны уже не распространяются.
Радиус ядра достигает 3500 км, его объем: 16% объема планеты, а масса: 31% массы Земли.
Многие ученые считают, что ядро находится в расплавленном состоянии. Его внешняя часть характеризуется резко пониженными значениями скоростей продольных волн, во внутренней части (радиусом в 1200 км) скорости сейсмических волн вновь возрастают до 11 км/с. Плотность пород ядра равна 11 г/см3, и она обуславливается наличием тяжелых элементов. Таким тяжелым элементом может быть железо. Вероятнее всего, железо является составной частью ядра, так как ядро чисто железного или железо-никелевого состава должно иметь плотность, на 8—15% превышающую существующую плотность ядра. Поэтому к железу в ядре, по-видимому, присоединены кислород, сера, углерод и водород.
Земная кора и ее типы
Интересно отметить, что глубже ученые практически не проникали, а если провести аналогию, то кора – это как кожица на яблоке по отношению ко всему его объему. Дальнейшее и более точное изучение требует совершенно другого уровня развития техники.
Если смотреть на планету в разрезе, то по мере разной глубины проникновения внутрь ее структуры можно по порядку выделить такие типы земной коры:
- Океаническая кора состоит преимущественно из базальтов, находится на дне океанов под огромными слоями воды.
- Континентальная или материковая кора покрывает сушу, состоит из очень богатого химического состава, включающего на 25% кремний, на 50% кислород, а также 18% других основных элементов таблицы Менделеева. В целях удобного изучения этой коры ее еще делят на нижнюю и верхнюю. Наиболее древние относятся к нижней части.
Температура коры увеличивается по мере углубления.
Предположения о ядре
Ядро начинается на глубине 2890 км. Его радиус составляет 3470 км.
В ядре принято изображать два слоя: внутреннее ядра и внешнее. Но так было не всегда.
В начале времен планета Земля не обладала структурой. Затем железо и никель устремились к центру планеты. Как это произошло, точно неизвестно. Но есть предположение, что ядро образовалось внезапно, когда тяжелые вещества двигались вглубь планеты. Другие считают, что железо медленно проникало в ядро.
Ядро сформировалось, когда планете было 30-100 миллионов лет. Вихревые движения в жидком ядре запустили 3,5 миллиарда лет назад магнитное поле. Потом в промежутке от 1,5 до 1 миллиарда лет назад температура в центре ядра снизилась. В ядре произошла кристаллизация. Образовалось твердое ядро.
Вулканизм
Вулканизм – это процессы, во время которых происходит движение магмы в верхних слоях мантии и ее приближение к земной поверхности. Типичным проявлением вулканизма является образование геологических тел в осадочных породах, а также выход лавы на поверхность с формированием специфического рельефа.
Вулканизм и движение земной коры – это два взаимосвязанных явления. В результате движения земной коры образуются геологические возвышенности или вулканы, под которыми проходят трещины. Они настолько глубокие, что по ним поднимается лава, горячие газы, пары воды, а также обломки горных пород. Колебания земной коры провоцируют извержения лавы с выбросом огромного количества пепла в атмосферу. Эти явления оказывают сильное влияние на погоду, изменяют рельеф вулканов.
Тектонические движения земной коры происходят под воздействием радиоактивной, химической и тепловой энергий. Эти движения приводят к различным деформациям земной поверхности, а также вызывают землетрясения и извержения вулканов. Все это приводит к изменению рельефа в горизонтальном или вертикальном направлении.
На протяжении долгих лет ученые изучают эти явления, разрабатывают аппараты, позволяющие регистрировать любые сейсмологические явления, даже самые незначительные колебания земли. Полученные данные помогают разгадать тайны Земли, а также предупредить людей о предстоящих извержениях вулканов. Правда, предугадать предстоящее сильное землетрясение пока не удается.
Строение океанической земной коры
Данная часть литосферы преимущественно состоит из базальтовых пород. Строение океанической земной коры изучено не так досконально, как континентальное. Теория тектонических плит объясняет, что океаническая земная кора является относительно молодой, а самые ее последние участки можно датировать поздней юрой.Ее толщина практически не изменяется со временем, так как она определяется количеством расплавов, выделяющихся из мантии в зоне срединно-океанических хребтов. На нее существенно влияет глубина осадочных слоев на дне океана. В наиболее объемных участках она составляет от 5 до 10 километров. Данный вид земной оболочки относится к океанической литосфере.
Как изучают строение Земли и других планет?
Изучение внутреннего строения планет, в том числе нашей Земли – чрезвычайно сложная задача. Мы не можем физически “пробурить” земную кору вплоть до ядра планеты, поэтому все знания полученные нами на данный момент – это знания полученные “на ощупь”, причем самым буквальным образом.
Как работает сейсморазведка на примере разведки нефтяных месторождений. «Прозваниваем» землю и «слушаем», что принесет нам отраженный сигнал
Дело в том, что наиболее простой и надежный способ узнать что же находится под поверхностью планеты и входит в состав её коры – это изучении скорости распространения сейсмических волн в недрах планеты.
Известно, что скорость продольных сейсмических волн возрастает в более плотных средах и напротив, уменьшается в рыхлых грунтах. Соответственно, зная параметры разных типов породы и имея расчетные данные о давлении и т.п., “слушая” полученный ответ, можно понять через какие слои земной коры прошел сейсмический сигнал и как глубоко они находятся под поверхностью.